Neutron generation enhanced by a femtosecond laser irradiating on multi-channel target

A novel scheme has been proposed to enhance neutron yields, in which a multi-channel target consisting of a row of parallel micro-wires and a plane substrate is irradiated by a relativistic femtosecond laser. Two-dimensional particle-in-cell simulations show that the multi-channel target can significantly enhance the neutron yield, which is about 4 orders of magnitude greater than the plane target. Different from the case of nanowire target, we find that when the laser penetrates into the channel, the excited transverse sheath electric field can effectively accelerate the D+ ions in the transverse direction. When these energetic D+ ions move towards the nearby wire, they will collide with the bulk D+ ions to trigger D-D fusion reaction and produce neutrons, which is much more effective than the plane target case. Due to the unique trajectory of the incident D+ ions, the angular distribution of the produced neutrons is modulated from isotropic to two peaks around ±90°. Meanwhile, this enhancement and modulation is further verified in a wide range of target parameters.

[1]  Yunhui Li,et al.  High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions , 2022, Matter and Radiation at Extremes.

[2]  K. Tanaka,et al.  10 PW peak power femtosecond laser pulses at ELI-NP , 2022, 2022 Conference on Lasers and Electro-Optics (CLEO).

[3]  O. Rosmej,et al.  Laser energy absorption and x-ray generation in nanowire arrays irradiated by relativistically intense ultra-high contrast femtosecond laser pulses , 2022, Physics of Plasmas.

[4]  J. Rocca,et al.  Ion acceleration and D-D fusion neutron generation in relativistically transparent deuterated nanowire arrays , 2021, Physical Review Research.

[5]  A. Junghans,et al.  High-Yield and High-Angular-Fluence Neutron Generation from Deuterons Accelerated by Laser-Driven Collisionless Shock , 2021, 2022 IEEE International Conference on Plasma Science (ICOPS).

[6]  K. Tanaka,et al.  Electron transport in a nanowire irradiated by an intense laser pulse , 2021, Physical Review Research.

[7]  H. Takabe,et al.  Recent progress of laboratory astrophysics with intense lasers , 2021, High Power Laser Science and Engineering.

[8]  J. W. Yoon,et al.  Realization of laser intensity over 1023  W/cm2 , 2021 .

[9]  M. Yu,et al.  Enhancement of target normal sheath acceleration in laser multi-channel target interaction , 2019 .

[10]  M. G. Capeluto,et al.  Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities , 2019, Plasma Physics and Controlled Fusion.

[11]  I. Kostyukov,et al.  Efficient gamma-ray source from solid-state microstructures irradiated by relativistic laser pulses , 2019, Plasma Physics and Controlled Fusion.

[12]  A. Pukhov,et al.  Efficient generation of  ∼100 MeV ions from ultrashort  ∼1021 W cm−2 laser pulse interaction with a waveguide target , 2019, Nuclear Fusion.

[13]  M. G. Capeluto,et al.  Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency , 2019, Plasma Physics and Controlled Fusion.

[14]  S. Kar,et al.  Electrostatic capacitance-type acceleration of ions with an intense few-cycle laser pulse , 2019, Applied Physics Letters.

[15]  I. Hofmann,et al.  Review of accelerator driven heavy ion nuclear fusion , 2018 .

[16]  Yuxin Leng,et al.  339  J high-energy Ti:sapphire chirped-pulse amplifier for 10  PW laser facility. , 2018, Optics letters.

[17]  A. Arefiev,et al.  Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target , 2018, Plasma Physics and Controlled Fusion.

[18]  J. Rocca,et al.  Micro-scale fusion in dense relativistic nanowire array plasmas , 2018, 2018 IEEE International Conference on Plasma Science (ICOPS).

[19]  P. Goncharov Differential and total cross sections and astrophysical S-factors for 2H(d,n)3He and 2H(d,p)3H reactions in a wide energy range , 2017 .

[20]  A. Krotkus,et al.  Enhanced THz emission efficiency of composition-tunable InGaAs nanowire arrays , 2017 .

[21]  L. Yi,et al.  Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets , 2017, Scientific Reports.

[22]  Julien Derouillat,et al.  Smilei : A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation , 2017, Comput. Phys. Commun..

[23]  R. Betti,et al.  Inertial-confinement fusion with lasers , 2016, Nature Physics.

[24]  Baifei Shen,et al.  Bright X-Ray Source from a Laser-Driven Microplasma Waveguide. , 2015, Physical review letters.

[25]  D. A. Callahan,et al.  Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.

[26]  R. Freeman,et al.  Effects of front-surface target structures on properties of relativistic laser-plasma electrons. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  S Depierreux,et al.  Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma , 2013, Nature Communications.

[28]  M. Donovan,et al.  Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction , 2013, 1303.5814.

[29]  Marco Borghesi,et al.  Ion acceleration by superintense laser-plasma interaction , 2013, 1302.1775.

[30]  Andrea Favalli,et al.  Bright laser-driven neutron source based on the relativistic transparency of solids. , 2013, Physical review letters.

[31]  M. Toimil-Molares,et al.  Efficient terahertz emission from InAs nanowires , 2011, 1109.0355.

[32]  R. Freeman,et al.  Comparison of bulk and pitcher-catcher targets for laser-driven neutron production , 2011 .

[33]  Y. Danon,et al.  Deuterated target comparison for pyroelectric crystal D–D nuclear fusion experiments , 2010 .

[34]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[35]  D. Habs,et al.  Relativistic laser-matter interaction and relativistic laboratory astrophysics , 2008, 0812.1421.

[36]  A. Nikroo,et al.  Comparative spectra and efficiencies of ions laser-accelerated forward from the front and rear surfaces of thin solid foils , 2007 .

[37]  S. Sebban,et al.  Deuterium-deuterium fusion dynamics in low-density molecular-cluster jets irradiated by intense ultrafast laser pulses. , 2002, Physical review letters.

[38]  T. E. Cowan,et al.  Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters , 1999, Nature.

[39]  G. Malka,et al.  FAST NEUTRON EMISSION FROM A HIGH-ENERGY ION BEAM PRODUCED BY A HIGH-INTENSITY SUBPICOSECOND LASER PULSE , 1999 .

[40]  J. Meyer-ter-Vehn,et al.  Neutron production by 200 mJ ultrashort laser pulses , 1998 .

[41]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[42]  Horst Liskien,et al.  Neutron production cross sections and energies for the reactions T(p,n)3He, D(d,n)3He, and T(d,n)4He , 1973 .

[43]  A. Obst,et al.  2H + reactions from 1.96 to 6.20 MeV , 1972 .

[44]  S. Ter-Avetisyan,et al.  Fusion neutron yield from a laser-irradiated heavy-water spray , 2005 .

[45]  M. V. Ammosov Tunnel ionization of complex atoms and of atomic ions in an altemating electromagnetic field , 1987 .

[46]  A. Ganeev,et al.  THE D-D REACTION IN THE DEUTERON ENERGY RANGE 100-1000 kev , 1958 .

[47]  W. B. Thompson Thermonuclear Reaction Rates , 1957 .