Gorenstein homological dimensions of modules over triangular matrix rings

Let $A$ and $B$ be rings, $U$ a $(B, A)$-bimodule and $T=\left(\begin{smallmatrix} A & 0 \\ U & B \\\end{smallmatrix}\right)$ be the triangular matrix ring. In this paper, we characterize the Gorenstein homological dimensions of modules over $T$, and discuss when a left $T$-module is strongly Gorenstein projective or strongly Gorenstein injective module.

[1]  E. Enochs,et al.  Gorenstein conditions over triangular matrix rings , 2014 .

[2]  Pu Zhang Gorenstein-projective modules and symmetric recollements , 2013 .

[3]  J. Asadollahi,et al.  On the Dimensions of Path Algebras , 2012, 1202.0379.

[4]  A. Tuganbaev,et al.  Modules over formal matrix rings , 2010 .

[5]  E. Enochs,et al.  Flat covers over formal triangular matrix rings and minimal Quillen factorizations , 2010 .

[6]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[7]  Pu Zhang,et al.  Strongly Gorenstein Projective Modules Over Upper Triangular Matrix Artin Algebras , 2009 .

[8]  E. Enochs,et al.  Gorenstein categories and Tate cohomology on projective schemes , 2007, 0711.1181.

[9]  Xiao-Wu Chen Singularity Categories, Schur Functors and Triangular Matrix Rings , 2007, 0706.3638.

[10]  Zhao Ying-cai On Gorenstein Flat Modules , 2007 .

[11]  N. Mahdou,et al.  Strongly Gorenstein projective, injective, and flat modules , 2006, math/0606770.

[12]  J. Asadollahi,et al.  On the vanishing of Ext over formal triangular matrix rings , 2006 .

[13]  Henrik Holm,et al.  Gorenstein homological dimensions , 2004 .

[14]  A. Haghany Injectivity conditions over a formal triangular matrix ring , 2002 .

[15]  K. Varadarajan,et al.  Study of modules over formal triangular matrix rings , 2000 .

[16]  K. Varadarajan,et al.  Study of formal triangular matrix rings , 1999 .

[17]  Overtoun M. G. Jenda,et al.  Gorenstein injective and projective modules , 1995 .

[18]  Ken R. Goodearl,et al.  An Introduction to Noncommutative Noetherian Rings , 1989 .

[19]  E. Green On the representation theory of rings in matrix form. , 1982 .

[20]  R. Fossum,et al.  Trivial extensions of Abelian categories : homological algebra of trivial extensions of Abelian categories with applications to ring theory , 1975 .