Kolmogorov's heritage in mathematics
暂无分享,去创建一个
Annick Lesne | A. N Kolmogorov | Éric Charpentier | N. K Nikolʹskiĭ | A. Kolmogorov | A. Lesne | E. Charpentier | N. K. Nikolʹskiĭ
[1] Gilles Dowek,et al. Principles of programming languages , 1981, Prentice Hall International Series in Computer Science.
[2] A. Debussche,et al. m-Dissipativity of Kolmogorov Operators Corresponding to Burgers Equations with Space-time White Noise , 2007 .
[3] Kevin Ford. Sharp probability estimates for random walks with barriers , 2006, math/0610450.
[4] Kevin Ford. Sharp probability estimates for generalized Smirnov statistics , 2006, math/0609224.
[5] Kevin Ford. The distribution of integers with a divisor in a given interval , 2004, math/0401223.
[6] Jean-Louis Krivine,et al. Dependent choice, 'quote' and the clock , 2003, Theor. Comput. Sci..
[7] Giuseppe Da Prato,et al. Ergodicity for the 3D stochastic Navier–Stokes equations , 2003 .
[8] V. Barbu,et al. The two phase stochastic Stefan problem , 2002 .
[9] Jonathan C. Mattingly. Exponential Convergence for the Stochastically Forced Navier-Stokes Equations and Other Partially Dissipative Dynamics , 2002 .
[10] G. Prato,et al. Singular dissipative stochastic equations in Hilbert spaces , 2002 .
[11] Giuseppe Da Prato,et al. Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .
[12] Martin Hairer,et al. Exponential mixing properties of stochastic PDEs through asymptotic coupling , 2001, math/0109115.
[13] A. Shirikyan,et al. Ergodicity for the Randomly Forced 2D Navier–Stokes Equations , 2001 .
[14] Jean-Louis Krivine,et al. Typed lambda-calculus in classical Zermelo-Frænkel set theory , 2001, Arch. Math. Log..
[15] E Weinan,et al. Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.
[16] S. Konyagin. On divergence of trigonometric Fourier series everywhere , 1999 .
[17] Jonathan C. Mattingly. Ergodicity of 2D Navier–Stokes Equations with¶Random Forcing and Large Viscosity , 1999 .
[18] Hendrik Pieter Barendregt,et al. The Impact of the Lambda Calculus in Logic and Computer Science , 1997, Bulletin of Symbolic Logic.
[19] Jean-Louis Krivine,et al. About classical logic and imperative programming , 1996, Annals of Mathematics and Artificial Intelligence.
[20] A. Lunardi,et al. On the Ornstein-Uhlenbeck Operator in Spaces of Continuous Functions , 1995 .
[21] J. Bourgain,et al. Uniqueness and free interpolation for logarithmic potentials and the cauchy problem for the laplace equation in 529-1529-1529-1 , 1995 .
[22] S. Cerrai. A Hille-Yosida theorem for weakly continuous semigroups , 1994 .
[23] Roger Temam,et al. Stochastic Burgers' equation , 1994 .
[24] Thierry Coquand,et al. On the computational content of the axiom of choice , 1994, The Journal of Symbolic Logic.
[25] Michael J. Fischer,et al. Lambda-calculus schemata , 1993, LISP Symb. Comput..
[26] D. van Dalen,et al. The War of the frogs and the mice, or the crisis of themathematische annalen , 1990 .
[27] Timothy G. Griffin,et al. A formulae-as-type notion of control , 1989, POPL '90.
[28] A. Shiryaev. Kolmogorov: Life and Creative Activities , 1989 .
[29] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[30] Martin T. Barlow,et al. Continuity of local times for Lévy processes , 1985 .
[31] T. P. Lukašenko. On theA-integral representation of the Hilbert transform and conjugate function , 1982 .
[32] P. Billingsley,et al. Probability and Measure , 1980 .
[33] Gordon D. Plotkin,et al. Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..
[34] P. Major,et al. An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .
[35] L. Gross. Potential theory on Hilbert space , 1967 .
[36] P. J. Landin,et al. Correspondence between ALGOL 60 and Church's Lambda-notation , 1965, Commun. ACM.
[37] R. Phillips,et al. Dissipative operators in a Banach space , 1961 .
[38] Hermann Weyl,et al. David Hilbert and his mathematical work , 1944 .
[39] O. Perron. Über Bruwiersche Reihen , 1939 .
[40] H. Cramér. Random Variables and Probability Distributions. , 1963 .
[41] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .
[42] P. Erdös. A generalization of a theorem of besicovitch , 1936 .
[43] A. Besicovitch,et al. On the density of certain sequences of integers , 1935 .
[44] J. Marcinkiewicz,et al. On the Convergence of Fourier Series , 1935 .
[45] A. Kolmogoroff. Zur Deutung der intuitionistischen Logik , 1932 .
[46] D. Hilbert,et al. Probleme der Grundlegung der Mathematik , 1930 .
[47] A. Kolmogoroff. Über das Gesetz des iterierten Logarithmus , 1929 .
[48] J. Neumann. Zur Hilbertschen Beweistheorie , 1927 .
[49] D. Hilbert. Die logischen Grundlagen der Mathematik , 1922 .
[50] H. Weyl,et al. Über die neue Grundlagenkrise der Mathematik , 1921 .
[51] E. D. Giorgi. Selected Papers , 2006 .
[52] Nail H. Ibragimov,et al. Selected works. Volume 4 , 2006 .
[53] Michael Röckner,et al. Invariant Measures for a Stochastic Porous Medium Equation , 2004 .
[54] Dennis E. Hesseling,et al. Gnomes in the Fog , 2003 .
[55] S. Bochkarev. Everywhere divergent Fourier-Walsh series , 2003 .
[56] Enrico Priola,et al. On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions , 1999 .
[57] J. Kahane,et al. Fourier series and wavelets , 1995 .
[58] Dariusz Gatarek,et al. Stochastic burgers equation with correlated noise , 1995 .
[59] M. Fukushima,et al. Dirichlet forms and symmetric Markov processes , 1994 .
[60] B. Goldys,et al. On weak solutions of stochastic equations in Hilbert spaces , 1994 .
[61] D. Nualart,et al. Compact families of Wiener functionals , 1992 .
[62] S. Kislyakov. Classical Themes of Fourier Analysis , 1991 .
[63] A. N. Kolmogorov,et al. Mathematics and mechanics , 1991 .
[64] Chetan R. Murthy. Extracting Constructive Content From Classical Proofs , 1990 .
[65] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[66] Noel Veraverbeke. Andrei Nikolaevitch Kolmogorov: 1903-1987 , 1988 .
[67] P. Martin-Lof,et al. Constructive mathematics and computer programming , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[68] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[69] E. Davies,et al. One-parameter semigroups , 1980 .
[70] P. Elliott. Probabilistic number theory , 1979 .
[71] Edsger W. Dijkstra,et al. A Discipline of Programming , 1976 .
[72] R. Diaconescu. Axiom of choice and complementation , 1975 .
[73] Shinzo Watanabe,et al. On the uniqueness of solutions of stochastic difierential equations , 1971 .
[74] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[75] M. E. Szabo,et al. The collected papers of Gerhard Gentzen , 1969 .
[76] Y. Katznelson. An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .
[77] John Myhill,et al. FORMAL SYSTEMS OF INTUITIONISTIC ANALYSIS, I, , 1968 .
[78] Georg Kreisel,et al. Functions, Ordinals, Species* , 1968 .
[79] Joseph R. Shoenfield,et al. Mathematical logic , 1967 .
[80] S. C. Kleene,et al. The foundations of intuitionistic mathematics : especially in relation to recursive functions , 1965 .
[81] J. Doob. Stochastic processes , 1953 .
[82] E. C. Titchmarsh. On Conjugate Functions , 1929 .
[83] A. Kolmogoroff. Une série de Fourier-Lebesgue divergente presque partout , 1923 .
[84] P. Reymond. Ueber die Fourierschen Reihen , 1873 .