The automatic meccano method to mesh complex solids

In this paper, we present significant advances of the novel meccano technique to construct adaptive tetrahedral meshes of 3-D complex solids. Specifically, we will consider a solid whose boundary is a surface of genus 0, i.e. a surface that is homeomorphic to the surface of a sphere. In this particular case, the automatic procedure is defined by a surface triangulation of the solid, a simple meccano composed by one cube and a tolerance that fixes the desired approximation of the solid surface. The main idea is based on an automatic mapping from the cube faces to the solid surface, a 3-D local refinement algorithm and a simultaneous mesh untangling and smoothing procedure. Although the initial surface triangulation can be a poor quality mesh, the meccano technique constructs high quality surface and volume adaptive meshes. A crucial consequence of the new mesh generation technique is the resulting discrete parametrization of a complex volume (solid) to a simple cube (meccano). Several examples show the efficiency of the proposed technique. Future possibilities of the meccano method for meshing a complex solid, whose boundary is a surface of genus greater than zero, are commented.

[1]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[2]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[3]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[4]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[5]  L. Freitag,et al.  Local optimization-based simplicial mesh untangling and improvement. , 2000 .

[6]  Ángel Plaza,et al.  Efficient refinement/derefinement algorithm of nested meshes to solve evolution problems , 1994 .

[7]  Charlie C. L. Wang,et al.  Automatic PolyCube-Maps , 2008, GMP.

[8]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[9]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[10]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[11]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[12]  Rafael Montenegro,et al.  Implementation in ALBERTA of an Automatic Tetrahedral Mesh Generator , 2006, IMR.

[13]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[14]  J. M. Escobar,et al.  An algebraic method for smoothing surface triangulations on a local parametric space , 2006 .

[15]  Victor M. Calo,et al.  Isogeometric Analysis: Toward Unification of Computer Aided Design and Finite Element Analysis , 2008 .

[16]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[17]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[18]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[19]  L. Freitag,et al.  Tetrahedral mesh improvement via optimization of the element condition number , 2002 .

[20]  J. M. Cascón,et al.  An automatic strategy for adaptive tetrahedral mesh generation , 2009 .

[21]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[22]  Rafael Montenegro,et al.  Local refinement of 3-D triangulations using object-oriented methods , 2004 .

[23]  Michael S. Floater,et al.  Convex combination maps over triangulations, tilings, and tetrahedral meshes , 2006, Adv. Comput. Math..

[24]  Rafael Montenegro,et al.  A New MeccanoTechnique for Adaptive 3-D Triangulations , 2007, IMR.

[25]  Hong Qin,et al.  Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.