The automatic meccano method to mesh complex solids
暂无分享,去创建一个
J. M. Escobar | J. M. Cascón | R. Montenegro | E. Rodŕıguez | G. Montero | J. M. Escobar | E. Rodríguez | R. Montenegro | G. Montero
[1] Bharat K. Soni,et al. Handbook of Grid Generation , 1998 .
[2] Paolo Cignoni,et al. PolyCube-Maps , 2004, SIGGRAPH 2004.
[3] P. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .
[4] Patrick M. Knupp,et al. Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..
[5] L. Freitag,et al. Local optimization-based simplicial mesh untangling and improvement. , 2000 .
[6] Ángel Plaza,et al. Efficient refinement/derefinement algorithm of nested meshes to solve evolution problems , 1994 .
[7] Charlie C. L. Wang,et al. Automatic PolyCube-Maps , 2008, GMP.
[8] Hong Qin,et al. Polycube splines , 2007, Comput. Aided Des..
[9] Michael S. Floater,et al. Mean value coordinates , 2003, Comput. Aided Geom. Des..
[10] Graham F. Carey,et al. Computational grids : generation, adaptation, and solution strategies , 1997 .
[11] Kai Hormann,et al. Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[12] Rafael Montenegro,et al. Implementation in ALBERTA of an Automatic Tetrahedral Mesh Generator , 2006, IMR.
[13] Michael S. Floater,et al. Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..
[14] J. M. Escobar,et al. An algebraic method for smoothing surface triangulations on a local parametric space , 2006 .
[15] Victor M. Calo,et al. Isogeometric Analysis: Toward Unification of Computer Aided Design and Finite Element Analysis , 2008 .
[16] Paul-Louis George,et al. Delaunay triangulation and meshing : application to finite elements , 1998 .
[17] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[18] Igor Kossaczký. A recursive approach to local mesh refinement in two and three dimensions , 1994 .
[19] L. Freitag,et al. Tetrahedral mesh improvement via optimization of the element condition number , 2002 .
[20] J. M. Cascón,et al. An automatic strategy for adaptive tetrahedral mesh generation , 2009 .
[21] Michael S. Floater,et al. One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..
[22] Rafael Montenegro,et al. Local refinement of 3-D triangulations using object-oriented methods , 2004 .
[23] Michael S. Floater,et al. Convex combination maps over triangulations, tilings, and tetrahedral meshes , 2006, Adv. Comput. Math..
[24] Rafael Montenegro,et al. A New MeccanoTechnique for Adaptive 3-D Triangulations , 2007, IMR.
[25] Hong Qin,et al. Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.