RNA-binding disturbances as a continuum from spinocerebellar ataxia type 2 to Parkinson disease

[1]  L. Fidani,et al.  The genetic background of Parkinson's disease: current progress and future prospects , 2016, Acta neurologica Scandinavica.

[2]  C. Rodrigues,et al.  MicroRNA‐145 Regulates Neural Stem Cell Differentiation Through the Sox2–Lin28/let‐7 Signaling Pathway , 2016, Stem cells.

[3]  G. Auburger,et al.  Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway , 2016, The Cerebellum.

[4]  T. C. Evans,et al.  Modifiers of solid RNP granules control normal RNP dynamics and mRNA activity in early development , 2015, The Journal of cell biology.

[5]  K. Nagata,et al.  Role of the cytoplasmic isoform of RBFOX1/A2BP1 in establishing the architecture of the developing cerebral cortex , 2015, Molecular Autism.

[6]  M. Farrer,et al.  Large-scale assessment of polyglutamine repeat expansions in Parkinson disease , 2015, Neurology.

[7]  J. Lykke-Andersen,et al.  DDX6 Orchestrates Mammalian Progenitor Function through the mRNA Degradation and Translation Pathways. , 2015, Molecular cell.

[8]  E. Valente,et al.  Candidate genes for Parkinson disease: Lessons from pathogenesis. , 2015, Clinica chimica acta; international journal of clinical chemistry.

[9]  M. Chartier-Harlin,et al.  Deregulation of protein translation control, a potential game-changing hypothesis for Parkinson's disease pathogenesis. , 2015, Trends in molecular medicine.

[10]  P. Heutink,et al.  Evidence for Immune Response, Axonal Dysfunction and Reduced Endocytosis in the Substantia Nigra in Early Stage Parkinson’s Disease , 2015, PloS one.

[11]  M. Rattray,et al.  C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis , 2015, PloS one.

[12]  O. Troyanskaya,et al.  Low‐variance RNAs identify Parkinson's disease molecular signature in blood , 2015, Movement disorders : official journal of the Movement Disorder Society.

[13]  Jie Zhu,et al.  PABPC1 exerts carcinogenesis in gastric carcinoma by targeting miR-34c. , 2015, International journal of clinical and experimental pathology.

[14]  S. Barmada Linking RNA Dysfunction and Neurodegeneration in Amyotrophic Lateral Sclerosis , 2015, Neurotherapeutics.

[15]  P. Chan,et al.  Linkage analysis and whole-exome sequencing exclude extra mutations responsible for the parkinsonian phenotype of spinocerebellar ataxia-2 , 2015, Neurobiology of Aging.

[16]  S. Pulst,et al.  Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. , 2014, JAMA neurology.

[17]  J. Schwamborn,et al.  Neural stem cells in Parkinson’s disease: a role for neurogenesis defects in onset and progression , 2014, Cellular and Molecular Life Sciences.

[18]  F. de Chaumont,et al.  Adult Neurogenesis Restores Dopaminergic Neuronal Loss in the Olfactory Bulb , 2014, The Journal of Neuroscience.

[19]  O. Mühlemann,et al.  Eukaryotic Initiation Factor 4G Suppresses Nonsense-Mediated mRNA Decay by Two Genetically Separable Mechanisms , 2014, PloS one.

[20]  Yutaka Suzuki,et al.  Direct binding of Ataxin-2 to distinct elements in 3' UTRs promotes mRNA stability and protein expression. , 2014, Molecular cell.

[21]  N. Hattori,et al.  The evaluation of polyglutamine repeats in autosomal dominant Parkinson's disease , 2014, Neurobiology of Aging.

[22]  A. Destée,et al.  Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson's disease , 2014, Neurobiology of Disease.

[23]  E. Arenas Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson's disease. , 2014, Journal of molecular cell biology.

[24]  Jian Kong,et al.  Cytoplasmic Poly(A) Binding Protein C4 Serves a Critical Role in Erythroid Differentiation , 2014, Molecular and Cellular Biology.

[25]  G. Comi,et al.  Analysis of hnRNPA1, A2/B1, and A3 genes in patients with amyotrophic lateral sclerosis , 2013, Neurobiology of Aging.

[26]  S. Kawamoto,et al.  Biochemical and morphological characterization of A2BP1 in neuronal tissue , 2013, Journal of neuroscience research.

[27]  Eric T. Wang,et al.  MBNL proteins repress ES-cell-specific alternative splicing and reprogramming , 2013, Nature.

[28]  T. Palm,et al.  The parkinson's disease-associated LRRK2 mutation R1441G inhibits neuronal differentiation of neural stem cells. , 2013, Stem cells and development.

[29]  Mohamad Saad,et al.  Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. , 2013, Human molecular genetics.

[30]  D. Hernandez,et al.  Corrigendum to Using genome-wide complex trait analysis to quantify 'missing heritability' in parkinson's disease [Human Molecular Genetics, 21: 22 (2012) 4996-5009] doi: 10.1093/hmg/dds335] , 2013 .

[31]  T. Gasser,et al.  Characterization of peripheral hematopoietic stem cells and monocytes in Parkinson's disease , 2013, Movement disorders : official journal of the Movement Disorder Society.

[32]  R. Heumann,et al.  Ataxin-2 Modulates the Levels of Grb2 and Src but Not Ras Signaling , 2013, Journal of Molecular Neuroscience.

[33]  H. Lehrach,et al.  Ataxin-2-Like Is a Regulator of Stress Granules and Processing Bodies , 2012, PloS one.

[34]  L. Velázquez-Pérez,et al.  Spinocerebellar Ataxia Type 2: Clinical Presentation, Molecular Mechanisms, and Therapeutic Perspectives , 2012, Molecular Neurobiology.

[35]  I. Bezprozvanny,et al.  Chronic Suppression of Inositol 1,4,5-Triphosphate Receptor-Mediated Calcium Signaling in Cerebellar Purkinje Cells Alleviates Pathological Phenotype in Spinocerebellar Ataxia 2 Mice , 2012, The Journal of Neuroscience.

[36]  B. Castellotti,et al.  ATAXIN2 CAG-repeat length in Italian patients with amyotrophic lateral sclerosis: risk factor or variant phenotype? Implication for genetic testing and counseling , 2012, Neurobiology of Aging.

[37]  U. Rüb,et al.  ATXN2-CAG42 Sequesters PABPC1 into Insolubility and Induces FBXW8 in Cerebellum of Old Ataxic Knock-In Mice , 2012, PLoS genetics.

[38]  Isaac S. Kohane,et al.  Quantifying the white blood cell transcriptome as an accessible window to the multiorgan transcriptome , 2012, Bioinform..

[39]  S. Liebhaber,et al.  Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations , 2011, Nucleic acids research.

[40]  A. Verma Altered RNA metabolism and amyotrophic lateral sclerosis , 2011, Annals of Indian Academy of Neurology.

[41]  L. Defebvre,et al.  Transcriptional profile of Parkinson blood mononuclear cells with LRRK2 mutation , 2011, Neurobiology of Aging.

[42]  I. Bezprozvanny Role of Inositol 1,4,5-Trishosphate Receptors in Pathogenesis of Huntington’s Disease and Spinocerebellar Ataxias , 2011, Neurochemical Research.

[43]  M. Buszczak,et al.  Drosophila Ataxin 2-binding protein 1 marks an intermediate step in the molecular differentiation of female germline cysts , 2010, Development.

[44]  S. Seneca,et al.  Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias , 2010, European Journal of Human Genetics.

[45]  S. Pulst,et al.  Deranged Calcium Signaling and Neurodegeneration in Spinocerebellar Ataxia Type 2 , 2009, The Journal of Neuroscience.

[46]  M. Wickens,et al.  Multifunctional deadenylase complexes diversify mRNA control , 2008, Nature Reviews Molecular Cell Biology.

[47]  A. Destée,et al.  Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? , 2007, Neurology.

[48]  Yu Kyeong Kim,et al.  Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism. , 2007, Archives of neurology.

[49]  H. Lehrach,et al.  Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. , 2007, Molecular biology of the cell.

[50]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[51]  K. Sobczak,et al.  CAG Repeats Containing CAA Interruptions Form Branched Hairpin Structures in Spinocerebellar Ataxia Type 2 Transcripts* , 2005, Journal of Biological Chemistry.

[52]  S. Mandel,et al.  Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes , 2004, Journal of Neural Transmission.

[53]  Charles Duyckaerts,et al.  Dopamine depletion impairs precursor cell proliferation in Parkinson disease , 2004, Nature Neuroscience.

[54]  F. Westermann,et al.  Ataxin-2 promotes apoptosis of human neuroblastoma cells , 2003, Oncogene.

[55]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[56]  M. Kiledjian,et al.  The Poly(A)-Binding Protein and an mRNA Stability Protein Jointly Regulate an Endoribonuclease Activity , 2000, Molecular and Cellular Biology.

[57]  M. Kiledjian,et al.  An mRNA Stability Complex Functions with Poly(A)-Binding Protein To Stabilize mRNA In Vitro , 1999, Molecular and Cellular Biology.

[58]  S. Pulst,et al.  Amyotrophic Lateral Sclerosis Risk for Spinocerebellar Ataxia Type 2 ATXN2 CAG Repeat Alleles , 2016 .

[59]  H. Mochizuki Adult Neurogenesis in Parkinson’s Disease , 2011 .

[60]  Hsiu-Chen Chang,et al.  The parkinsonian phenotype of spinocerebellar ataxia type 2. , 2004, Archives of neurology.

[61]  S. Gilman,et al.  Diagnostic criteria for Parkinson disease. , 1999, Archives of neurology.