Constructing Tower Extensions for the implementation of Pairing-Based Cryptography

A cryptographic pairing evaluates as an element in an extension field, and the evaluation itself involves a considerable amount of extension field arithmetic. It is recognised that organising the extension field as a “tower” of subfield extensions has many advantages. Here we consider criteria that apply when choosing the best towering construction, and the associated choice of irreducible polynomials for the implementation of pairing-based cryptosystems. We introduce a method for automatically constructing efficient towers for more congruency classes than previous methods, some of which allow faster arithmetic.

[1]  Hyang-Sook Lee,et al.  Efficient and Generalized Pairing Computation on Abelian Varieties , 2009, IEEE Transactions on Information Theory.

[2]  Alfred Menezes,et al.  Pairing-Based Cryptography at High Security Levels , 2005, IMACC.

[3]  Tanja Lange,et al.  Faster Computation of the Tate Pairing , 2009, IACR Cryptol. ePrint Arch..

[4]  Berk Sunar,et al.  Optimal tower fields , 2004, IEEE Transactions on Computers.

[5]  Michael Scott,et al.  A Taxonomy of Pairing-Friendly Elliptic Curves , 2010, Journal of Cryptology.

[6]  Paulo S. L. M. Barreto,et al.  Constructing Elliptic Curves with Prescribed Embedding Degrees , 2002, SCN.

[7]  Martijn Stam,et al.  On Small Characteristic Algebraic Tori in Pairing-Based Cryptography , 2004, IACR Cryptol. ePrint Arch..

[8]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[9]  Michael Scott,et al.  Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves , 2009, Journal of Cryptology.

[10]  Ricardo Dahab,et al.  Implementing Cryptographic Pairings over Barreto-Naehrig Curves , 2007, Pairing.

[11]  Frederik Vercauteren,et al.  The Eta Pairing Revisited , 2006, IEEE Transactions on Information Theory.

[12]  Christof Paar,et al.  Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms , 1998, CRYPTO.

[13]  Paulo S. L. M. Barreto,et al.  Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.

[14]  Alfred Menezes,et al.  Guide to Elliptic Curve Cryptography , 2004, Springer Professional Computing.

[15]  Michael Scott,et al.  Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field , 2008, Pairing.

[16]  Paulo S. L. M. Barreto,et al.  Compressed Pairings , 2004, CRYPTO.

[17]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.