Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa.

Although patterning during regeneration in adult planarians has been studied extensively, very little is known about how the initial planarian body plan arises during embryogenesis. Herein, we analyze the process of embryo patterning in the species Schmidtea polychroa by comparing the expression of genes involved in the establishment of the metazoan body plan. Planarians present a derived ectolecithic spiralian development characterized by dispersed cleavage within a yolk syncytium and an early transient embryo capable of feeding on the maternally supplied yolk cells. During this stage of development, we only found evidence of canonical Wnt pathway, mostly associated with the development of its transient pharynx. At these stages, genes involved in gastrulation (snail) and germ layer determination (foxA and twist) are specifically expressed in migrating blastomeres and those giving rise to the temporary gut and pharyngeal muscle. After yolk ingestion, the embryo expresses core components of the canonical Wnt pathway and the BMP pathway, suggesting that the definitive axial identities are established late. These data support the division of planarian development into two separate morphogenetic stages: a highly divergent gastrulation stage, which segregates the three germ layers and establishes the primary organization of the feeding embryo; and subsequent metamorphosis, based on totipotent blastomeres, which establishes the definitive adult body plan using mechanisms that are similar to those used during regeneration and homeostasis in the adult.

[1]  Jochen C. Rink,et al.  β-Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis , 2008, Science.

[2]  P. Reddien,et al.  Smed-βcatenin-1 Is Required for Anteroposterior Blastema Polarity in Planarian Regeneration , 2008, Science.

[3]  Kariena Dill,et al.  Characterization of twist and snail gene expression during mesoderm and nervous system development in the polychaete annelid Capitella sp. I , 2007, Development Genes and Evolution.

[4]  David J. Forsthoefel,et al.  Emerging patterns in planarian regeneration. , 2009, Current opinion in genetics & development.

[5]  Jordi Solana,et al.  SpolvlgA is a DDX3/PL10-related DEAD-box RNA helicase expressed in blastomeres and embryonic cells in planarian embryonic development , 2009, International journal of biological sciences.

[6]  S A Bustin,et al.  Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. , 2002, Journal of molecular endocrinology.

[7]  C. R. Bardeen EMBRYONIC AND REGENERATIVE DEVELOPMENT IN PLANARIANS , 1902 .

[8]  M. Boyle,et al.  Developmental expression of foxA and gata genes during gut formation in the polychaete annelid, Capitella sp. I , 2008, Evolution & development.

[9]  A. Cardona,et al.  The embryonic development of the triclad Schmidtea polychroa , 2005, Development Genes and Evolution.

[10]  P. Reddien,et al.  A wound-induced Wnt expression program controls planarian regeneration polarity , 2009, Proceedings of the National Academy of Sciences.

[11]  R. Sluys A monograph of the marine triclads , 1989 .

[12]  Hidefumi Orii,et al.  Bone morphogenetic protein is required for dorso‐ventral patterning in the planarian Dugesia japonica , 2007, Development, growth & differentiation.

[13]  H. Marthy,et al.  Experimental Embryology in Aquatic Plants and Animals , 1990, NATO ASI Series.

[14]  F. Seilern-Aspang Entwicklungsgeschichtliche Studien an Paludicolen Tricladen , 1958, Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen.

[15]  加藤 光次郎 On the development of some Japanese polyclads , 1941 .

[16]  U. Technau,et al.  Origin and evolution of endoderm and mesoderm. , 2003, The International journal of developmental biology.

[17]  J. Bolker,et al.  Model systems in developmental biology , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[18]  D. McClay,et al.  Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. , 1999, Development.

[19]  A. Cardona,et al.  An in situ hybridization protocol for planarian embryos: monitoring myosin heavy chain gene expression , 2005, Development Genes and Evolution.

[20]  A. Nederbragt,et al.  Characterisation of two snail genes in the gastropod mollusc Patella vulgata. Implications for understanding the ancestral function of the snail-related genes in Bilateria , 2002, Development Genes and Evolution.

[21]  Kiyokazu Agata,et al.  Planarian Hedgehog/Patched establishes anterior–posterior polarity by regulating Wnt signaling , 2009, Proceedings of the National Academy of Sciences.

[22]  C. Arenas-Mena Embryonic expression of HeFoxA1 and HeFoxA2 in an indirectly developing polychaete , 2006, Development Genes and Evolution.

[23]  Adam L. Bermange,et al.  BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration , 2007, Development.

[24]  飯島 魁 Untersuchungen über den Bau und die Entwicklungsgeschichte der Süsswasser-Dendrocoelen (Tricladen) , 1884 .

[25]  Jordi Solana,et al.  Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. , 2009, Developmental biology.

[26]  Matthew A. Wills,et al.  The choice of model organisms in evo–devo , 2007, Nature Reviews Genetics.

[27]  Embryology of the Turbellaria and its phylogenetic significance , 1986 .

[28]  F. Cebrià,et al.  Intercalary muscle cell renewal in planarian pharynx , 1999, Development Genes and Evolution.

[29]  Çîîëîãèÿ áåñïîçâîíî÷íûõ,et al.  Invertebrate Zoology , 1927, Nature.

[30]  B. Bowerman,et al.  beta-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. , 2007, Developmental cell.

[31]  P. Reddien,et al.  Gene nomenclature guidelines for the planarian Schmidtea mediterranea , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[32]  Teresa Adell,et al.  Planarian regeneration: achievements and future directions after 20 years of research. , 2009, The International journal of developmental biology.

[33]  J. Anderson,et al.  SOME ASPECTS OF REPRODUCTIVE BIOLOGY IN THE FRESH-WATER TRICLAD TURBELLARIAN, CURA FOREMANII , 1958 .

[34]  N. Patel,et al.  Investigating divergent mechanisms of mesoderm development in arthropods: the expression of Ph-twist and Ph-mef2 in Parhyale hawaiensis. , 2008, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[35]  J. Henry Conserved mechanism of dorsoventral axis determination in equal-cleaving spiralians. , 2002, Developmental biology.

[36]  K. Watanabe,et al.  The process of pharynx regeneration in planarians. , 1999, Developmental biology.

[37]  D. Weisblat,et al.  Dorsal and Snail homologs in leech development , 2001, Development, Genes and Evolution.

[38]  Gonzalo Giribet,et al.  Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion? , 2002, Molecular phylogenetics and evolution.

[39]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[40]  E. Saló,et al.  The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. , 2007, Developmental biology.

[41]  Albert Cardona,et al.  Early embryogenesis of planaria: a cryptic larva feeding on maternal resources , 2006, Development Genes and Evolution.

[42]  J. Baguñá,et al.  Descriptive and Experimental Embryology of the Turbellaria: Present Knowledge, Open Questions and Future Trends , 1990 .

[43]  M. Martindale,et al.  An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation , 2003, Nature.

[44]  Pere Serra,et al.  New method to deliver exogenous material into developing planarian embryos. , 2008, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[45]  D. McClay,et al.  Nuclear β -catenin is required to specify vegetal cell fates in the sea urchin embryo , 1998 .

[46]  D. Weisblat,et al.  A leech homolog of twist: evidence for its inheritance as a maternal mRNA. , 1997, Gene.

[47]  K. Watanabe,et al.  Planaria FoxA (HNF3) homologue is specifically expressed in the pharynx-forming cells. , 2000, Gene.

[48]  B. Jamieson Reproductive Biology of Invertebrates , 1999 .

[49]  N. Lartillot,et al.  Expression patterns of fork head and goosecoid homologues in the mollusc Patella vulgata supports the ancestry of the anterior mesendoderm across Bilateria , 2002, Development Genes and Evolution.

[50]  W. C. Curtis The Life History, the Normal Fission and the Reproductive Organs of Planaria Maculata , 2012 .

[51]  M. Boutros,et al.  19-P001 Smed-evi/wntless is required for β-catenin-dependent and -independent processes during planarian regeneration , 2009, Mechanisms of Development.

[52]  Jochen C. Rink,et al.  Planarian Hh Signaling Regulates Regeneration Polarity and Links Hh Pathway Evolution to Cilia , 2009, Science.

[53]  M. Martindale,et al.  Beta-catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus. , 2008, Developmental biology.

[54]  M. Martindale,et al.  Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. , 2007, Developmental biology.

[55]  Kentaro Kato,et al.  Molecular Cloning of Bone Morphogenetic Protein (BMP) Gene from the Planarian Dugesia japonica , 1998 .

[56]  A. L. Moigne Etude du développement embryonnaire et recherches sur les cellules de régénération chez l'embryon de la Planaire Polycelis nigra (Turbellarié, Triclade) , 1966 .

[57]  Teresa Adell,et al.  Silencing of Smed-βcatenin1 generates radial-like hypercephalized planarians , 2008, Development.

[58]  A. Nederbragt,et al.  A lophotrochozoan twist gene is expressed in the ectomesoderm of the gastropod mollusk Patella vulgata , 2002, Evolution & development.

[59]  M. Martindale,et al.  The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians. , 1998, Developmental biology.

[60]  M. E. Rice,et al.  Settlement and metamorphosis of marine invertebrate larvae , 1978 .

[61]  Eric Ross,et al.  SmedGD: the Schmidtea mediterranea genome database , 2007, Nucleic Acids Res..

[62]  Pierre Kerner,et al.  Insights into the evolution of the snail superfamily from metazoan wide molecular phylogenies and expression data in annelids , 2009, BMC Evolutionary Biology.

[63]  M. Martindale The evolution of metazoan axial properties , 2005, Nature Reviews Genetics.

[64]  H. Steinbeisser,et al.  β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos , 1996, Mechanisms of Development.

[65]  S. Bustin Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. , 2000, Journal of molecular endocrinology.

[66]  M. Benazzi Ginogenesi in tricladi di acqua dolce , 2004, Chromosoma.

[67]  M. Martindale,et al.  A developmental perspective: changes in the position of the blastopore during bilaterian evolution. , 2009, Developmental cell.

[68]  C. Burge,et al.  Computational inference of homologous gene structures in the human genome. , 2001, Genome research.