Pulmonary afferent control of breathing as end-expiratory lung volume decreases.

We studied reflex changes in breathing elicited by graded reductions in end-expiratory lung volume (EEVL) and the vagal nerves responsible. The chests of nine dogs anesthetized with alpha-chloralose were opened, and the lungs were ventilated by a phrenic nerve-driven servo-respirator. The immediate effects of a 50% reduction in end-expiratory transpulmonary pressure (EEPtp) from control (EEVL equivalent to functional residual capacity) were to significantly increase both tidal volume (VT) and breathing frequency (f) from 0.402 +/- 0.101 to 0.453 +/- 0.091 liter (mean +/- SD) and 11.8 +/- 5.4 to 15.7 +/- 6.4 breaths/min, respectively (P less than 0.05). Further reductions in EEPtp to 0 cmH2O did not change VT but augmented f to 19.6 +/- 6.6 breaths/min (P less than 0.05). The increase in f as EEVL decreased was due entirely to a reduction in expiratory time. Vagotomy abolished these reflexes. By 90 s after reduction in EEVL, arterial PCO2 fell significantly and VT returned to or below control values. We therefore repeated these experiments in five dogs whose blood gases were controlled by cardiopulmonary bypass. There were no secondary changes in VT and by 90 s breathing pattern could be characterized as rapid and deep. In another eight dogs submitted to the same collapse protocol, we recorded action potentials from all known categories of pulmonary vagal afferents. These studies demonstrated that the changes in breathing pattern induced by a 50% reduction in EEPtp were due to a withdrawal of slowly adapting stretch receptor activity; however, continued increases in f as EEVL was reduced further were due to increases in rapidly adapting stretch receptor activity.(ABSTRACT TRUNCATED AT 250 WORDS)