The discrete Fourier transform of $r$-even functions
暂无分享,去创建一个
[1] H S Vandiver,et al. A VON STERNECK ARITHMETICAL FUNCTION AND RESTRICTED PARTITIONS WITH RESPECT TO A MODULUS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.
[2] M. W. Wong. Discrete Fourier Analysis , 2011 .
[3] E. Cohen,et al. Representations of even functions $(\mod r)$, II. Cauchy products , 1959 .
[4] László Tóth,et al. A Survey of Gcd-Sum Functions , 2010 .
[5] David Rearick. Semi-multiplicative functions , 1966 .
[6] Pentti Haukkanen,et al. Discrete Ramanujan-Fourier Transform of Even Functions (mod $r$) , 2012, ArXiv.
[7] E. Cohen,et al. A CLASS OF ARITHMETICAL FUNCTIONS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.
[8] Hugh L. Montgomery,et al. Multiplicative Number Theory I: Classical Theory , 2006 .
[9] E. Cohen,et al. Representations of even functions (\mod r$), Arithmetical identities , 1958 .
[10] P. McCarthy,et al. Introduction to Arithmetical Functions , 1985 .
[11] A. Terras. Fourier Analysis on Finite Groups and Applications: Index , 1999 .
[12] László Tóth. Remarks on generalized Ramanujan sums and even functions , 2006 .
[13] Wolfgang Schramm. THE FOURIER TRANSFORM OF FUNCTIONS OF THE GREATEST COMMON DIVISOR , 2008 .
[14] D. Sundararajan. The Discrete Fourier Transform: Theory, Algorithms and Applications , 2001 .
[15] Tom M. Apostol,et al. The evaluation of Ramanujan’s sum and generalizations , 1953 .
[16] Finite Trigonometric Character Sums Via Discrete Fourier Analysis , 2008, 0804.0645.
[17] The Composition of the gcd and Certain Arithmetic Functions , 2010 .
[18] Tom M. Apostol,et al. Arithmetical properties of generalized Ramanujan sums , 1972 .
[19] Wolfgang Schwarz,et al. Uniformly Almost-Periodic Arithmetical Functions , 1994 .
[20] William L. Briggs,et al. The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .
[21] R Sivaramakrishnan,et al. Classical Theory of Arithmetic Functions , 1988 .
[22] L. Tóth,et al. An analogue of Ramanujan’s sum with respect to regular integers (modr) , 2010, 1008.5239.
[23] Hugh L. Montgomery,et al. Multiplicative Number Theory I: Zeros , 2006 .
[24] M. Omair Ahmad,et al. Ramanujan sums and discrete Fourier transforms , 2005, IEEE Signal Processing Letters.
[25] E. Cohen,et al. Representations of even functions $(\mod r)$. III. Special topics , 1959 .
[26] T. Apostol. Introduction to analytic number theory , 1976 .
[27] Kurt Bryan,et al. Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing , 2008 .