The discrete Fourier transform of $r$-even functions

We give a detailed study of the discrete Fourier transform (DFT) of r-even arithmetic functions, which form a subspace of the space of r-periodic arithmetic functions. We consider the DFT of sequences of r-even functions, their mean values and Dirichlet series. Our results generalize properties of the Ramanujan sum. We show that some known properties of r-even functions and of the Ramanujan sum can be obtained in a simple manner via the DFT.

[1]  H S Vandiver,et al.  A VON STERNECK ARITHMETICAL FUNCTION AND RESTRICTED PARTITIONS WITH RESPECT TO A MODULUS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. W. Wong Discrete Fourier Analysis , 2011 .

[3]  E. Cohen,et al.  Representations of even functions $(\mod r)$, II. Cauchy products , 1959 .

[4]  László Tóth,et al.  A Survey of Gcd-Sum Functions , 2010 .

[5]  David Rearick Semi-multiplicative functions , 1966 .

[6]  Pentti Haukkanen,et al.  Discrete Ramanujan-Fourier Transform of Even Functions (mod $r$) , 2012, ArXiv.

[7]  E. Cohen,et al.  A CLASS OF ARITHMETICAL FUNCTIONS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Hugh L. Montgomery,et al.  Multiplicative Number Theory I: Classical Theory , 2006 .

[9]  E. Cohen,et al.  Representations of even functions (\mod r$), Arithmetical identities , 1958 .

[10]  P. McCarthy,et al.  Introduction to Arithmetical Functions , 1985 .

[11]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[12]  László Tóth Remarks on generalized Ramanujan sums and even functions , 2006 .

[13]  Wolfgang Schramm THE FOURIER TRANSFORM OF FUNCTIONS OF THE GREATEST COMMON DIVISOR , 2008 .

[14]  D. Sundararajan The Discrete Fourier Transform: Theory, Algorithms and Applications , 2001 .

[15]  Tom M. Apostol,et al.  The evaluation of Ramanujan’s sum and generalizations , 1953 .

[16]  Finite Trigonometric Character Sums Via Discrete Fourier Analysis , 2008, 0804.0645.

[17]  The Composition of the gcd and Certain Arithmetic Functions , 2010 .

[18]  Tom M. Apostol,et al.  Arithmetical properties of generalized Ramanujan sums , 1972 .

[19]  Wolfgang Schwarz,et al.  Uniformly Almost-Periodic Arithmetical Functions , 1994 .

[20]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[21]  R Sivaramakrishnan,et al.  Classical Theory of Arithmetic Functions , 1988 .

[22]  L. Tóth,et al.  An analogue of Ramanujan’s sum with respect to regular integers (modr) , 2010, 1008.5239.

[23]  Hugh L. Montgomery,et al.  Multiplicative Number Theory I: Zeros , 2006 .

[24]  M. Omair Ahmad,et al.  Ramanujan sums and discrete Fourier transforms , 2005, IEEE Signal Processing Letters.

[25]  E. Cohen,et al.  Representations of even functions $(\mod r)$. III. Special topics , 1959 .

[26]  T. Apostol Introduction to analytic number theory , 1976 .

[27]  Kurt Bryan,et al.  Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing , 2008 .