Rice husk-earth based composites: A novel bio-based panel for buildings refurbishment

[1]  R. Dheilly,et al.  Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites , 1999 .

[2]  R. Dheilly,et al.  PROPERTIES OF WOOD-BASED COMPOSITES FORMULATED WITH AGGREGATE INDUSTRY WASTE , 2000 .

[3]  H. Binici,et al.  Investigation of fibre reinforced mud brick as a building material , 2005 .

[4]  C. Rode,et al.  NORDTEST PROJECT ON MOISTURE BUFFER VALUE OF MATERIALS , 2005 .

[5]  S. Kenai,et al.  Performance of composite soil reinforced with barley straw , 2005 .

[6]  M. Achenza,et al.  On Earth Stabilization with Natural Polymers for Earth Masonry Construction , 2005 .

[7]  M. N. Bodur,et al.  Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials , 2007 .

[8]  F. Henriques,et al.  Comparative evaluation of lime mortars for architectural conservation , 2008 .

[9]  Nuno G. Almeida,et al.  Lime mortars with rice husk ash for ancient masonry , 2008 .

[10]  S. Roels,et al.  Qualitative and quantitative assessment of interior moisture buffering by enclosures , 2009 .

[11]  Wei Wu,et al.  The Influence of Natural Reinforcement Fibres on Insulation Values of Earth Plaster for Straw Bale Buildings , 2010 .

[12]  Esther Adhiambo Obonyo,et al.  Durability of Compressed Earth Bricks: Assessing Erosion Resistance Using the Modified Spray Testing , 2010 .

[13]  Salah Fertikh,et al.  Comportement mécanique et hydrique des composites à matrice cimentaire et argileuse à base de diss «Ampelodesma mauritanica» , 2011 .

[14]  Carlos Alberto Ríos Reyes,et al.  Effect of the addition of coal-ash and cassava peels on the engineering properties of compressed earth blocks , 2012 .

[15]  F. Aymerich,et al.  Effect of reinforcing wool fibres on fracture and energy absorption properties of an earthen material , 2012 .

[16]  S. Gaye,et al.  Water content dependence of the porosity, density and thermal capacity of laterite based bricks with millet waste additive , 2012 .

[17]  Paulina Faria,et al.  Evaluation of air lime and clayish earth mortars for earthen wall renders , 2013 .

[18]  J. Aubert,et al.  Hygrothermal properties of earth bricks , 2014 .

[19]  E. Garcia-Diaz,et al.  Use of raw rice husk as natural aggregate in a lightweight insulating concrete: An innovative application , 2014 .

[20]  J. Morel,et al.  Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers , 2014 .

[21]  A. Shea,et al.  Conditions affecting the moisture buffering measurement performed on compressed earth blocks , 2014 .

[22]  Hamza Güllü,et al.  Effect of freeze–thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime , 2014 .

[23]  Ahmed Y. Tawfik,et al.  Effect of some waste additives on the physical and mechanical properties of gypsum plaster composites , 2014 .

[24]  R. Veiga,et al.  Physical and chemical assessment of lime–metakaolin mortars: Influence of binder:aggregate ratio , 2014 .

[25]  Paulina Faria,et al.  Eco-efficient earthen plasters: The influence of the addition of natural fibers. , 2015 .

[26]  A. Bertron,et al.  Development of bio-based earth products for healthy and sustainable buildings: Characterization of microbiological, mechanical and hygrothermal properties , 2015 .

[27]  A. Bertron,et al.  Influence of straw content on the mechanical and thermal properties of bio-based earth composites , 2015 .

[28]  Azra Korjenic,et al.  Equilibrium moisture content of earth bricks biocomposites stabilized with cement and gypsum , 2015 .

[29]  Paulina Faria,et al.  Evaporation from Porous Building Materials and Its Cooling Potential , 2015 .

[30]  Paulina Faria,et al.  Earthen Plasters Based on Illitic Soils from Barrocal Region of Algarve: Contributions for Building Performance and Sustainability , 2016 .

[31]  Jean-Emmanuel Aubert,et al.  Plant aggregates and fibers in earth construction materials: A review , 2016 .

[32]  D. Hoxha,et al.  Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation , 2016 .

[33]  H. Binici,et al.  Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials , 2016 .

[34]  P. Walker,et al.  Determination of hygrothermal parameters of experimental and commercial bio-based insulation materials , 2016 .

[35]  Paulina Faria,et al.  Experimental Characterization of an Earth Eco-Efficient Plastering Mortar , 2016 .

[36]  A. Laborel-Preneron Formulation and characterization of unfired clay bricks with plant aggregates , 2017 .

[37]  Paulina Faria,et al.  Avaliação in situ do comportamento de rebocos exteriores de argamassas de terra com baixas adições de cais , 2017 .

[38]  Paulina Faria,et al.  Production of eco-efficient earth-based plasters: Influence of composition on physical performance and bio-susceptibility , 2017 .

[39]  Andrea Lazzaretto,et al.  The development history and prospects of biomass-based insulation materials for buildings , 2017 .

[40]  C. Casavola,et al.  Hygrothermal properties of clayey plasters with olive fibers , 2018 .

[41]  A. Bertron,et al.  Laboratory test to assess sensitivity of bio-based earth materials to fungal growth , 2018, Building and Environment.

[42]  J. Aubert,et al.  Characterization of Barley Straw, Hemp Shiv and Corn Cob as Resources for Bioaggregate Based Building Materials , 2018 .

[43]  Paulina Faria,et al.  Earth-based mortars for repair and protection of rammed earth walls. Stabilization with mineral binders and fibers , 2018 .

[44]  N. Ranganathan,et al.  Mechanical and hygrothermal behavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation , 2018 .

[45]  J. Aubert,et al.  Comparison of barley and lavender straws as bioaggregates in earth bricks , 2019, Construction and Building Materials.