Observational Characterization of Main-belt Comet and Candidate Main-belt Comet Nuclei

We report observations of nine main-belt comets (MBCs) or candidate MBCs, most of which were obtained when the targets were apparently inactive. We find effective nucleus radii (assuming albedos of p V = 0.05 ± 0.02) of r n = (0.24 ± 0.05) km for 238P/Read, r n = (0.9 ± 0.2) km for 313P/Gibbs, r n = (0.6 ± 0.1) km for 324P/La Sagra, r n = (1.0 ± 0.2) km for 426P/PANSTARRS, r n = (0.5 ± 0.1) km for 427P/ATLAS, r n < (0.3 ± 0.1) km for P/2016 J1-A (PANSTARRS), r n < (0.17 ± 0.04) km for P/2016 J1-B (PANSTARRS), r n ≤ (0.5 ± 0.2) km for P/2017 S9 (PANSTARRS), recently redesignated 455P/PANSTARRS, and r n = (0.4 ± 0.1) km for P/2019 A3 (PANSTARRS). We identify evidence of activity in observations of 238P in 2021, and find similar inferred activity onset times and net initial mass-loss rates for 238P during perihelion approaches in 2010, 2016, and 2021. P/2016 J1-A and P/2016 J1-B are also found to be active in 2021 and 2022, making them collectively the tenth MBC confirmed to be recurrently active near perihelion and therefore likely to be exhibiting sublimation-driven activity. The nucleus of 313P is found to have colors of g′−r′=0.52±0.05 and r′−i′=0.22±0.07 , consistent with 313P being a Lixiaohua family member. We also report nondetections of P/2015 X6 (PANSTARRS), where we conclude that its current nucleus size is likely below our detection limits (r n ≲ 0.3 km). Lastly, we find that of 17 MBCs or candidate MBCs for which nucleus sizes (or inferred parent body sizes) have been estimated, >80% have r n ≤ 1.0 km, pointing to an apparent physical preference toward small MBCs, where we suggest that Yarkovsky–O’Keefe–Radzievskii–Paddack spin-up may play a significant role in triggering and/or facilitating MBC activity.

[1]  H. Hsieh,et al.  Photometric and dynamic characterisation of active asteroid (248370) 2005QN173 , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  D. Jewitt,et al.  Hubble Space Telescope Observations of Active Asteroid P/2020 O1 (Lemmon-PANSTARRS) , 2022, The Astrophysical Journal Letters.

[3]  C. Trujillo,et al.  Recurrent Activity from Active Asteroid (248370) 2005 QN173: A Main-belt Comet , 2021, The Astrophysical Journal Letters.

[4]  A. Fitzsimmons,et al.  Physical Characterization of Main-belt Comet (248370) 2005 QN173 , 2021, The Astrophysical Journal Letters.

[5]  F. Moreno,et al.  Dust environment of active asteroids P/2019 A4 (PANSTARRS) and P/2021 A5 (PANSTARRS) , 2021, Monthly notices of the Royal Astronomical Society.

[6]  L. Denneau,et al.  Asteroid phase curves from ATLAS dual-band photometry , 2020, Icarus.

[7]  J. Vincent,et al.  Cometary Comae-Surface Links , 2020, Space Science Reviews.

[8]  D. Jewitt,et al.  Component properties and mutual orbit of binary main-belt comet 288P/(300163) 2006 VW139 , 2020, Astronomy & Astrophysics.

[9]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[10]  Peter H. Smith,et al.  Disk-resolved photometric modeling and properties of asteroid (101955) Bennu , 2020 .

[11]  J. Licandro,et al.  The spectroscopic properties of the Lixiaohua family, cradle of Main Belt Comets , 2020 .

[12]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[13]  Michael Mommert,et al.  sbpy: A Python module for small-body planetary astronomy , 2019, J. Open Source Softw..

[14]  D. Trilling,et al.  Six Years of Sustained Activity in (6478) Gault , 2019, The Astrophysical Journal.

[15]  Brett M. Morris,et al.  astroquery: An Astronomical Web-querying Package in Python , 2019, The Astronomical Journal.

[16]  R. Kotulla,et al.  Active Asteroid P/2017 S5 (ATLAS) , 2018, Astronomical Journal.

[17]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[18]  C. Trujillo,et al.  The 2016 Reactivations of the Main-belt Comets 238P/Read and 288P/(300163) 2006 VW139 , 2018, The Astronomical Journal.

[19]  B. Stalder,et al.  The ATLAS All-Sky Stellar Reference Catalog , 2018, The Astrophysical Journal.

[20]  C. Trujillo,et al.  The Reactivation and Nucleus Characterization of Main-belt Comet 358P/PANSTARRS (P/2012 T1) , 2018, The Astronomical Journal.

[21]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[22]  H. Hsieh,et al.  Asteroid Family Associations of Active Asteroids , 2018, 1801.01152.

[23]  David Jewitt,et al.  A binary main-belt comet , 2017, Nature.

[24]  Roberto Orosei,et al.  The Main Belt Comets and ice in the Solar System , 2017, 1709.05549.

[25]  D. Jewitt,et al.  Anatomy of an Asteroid Breakup: The Case of P/2013 R3 , 2017, The Astronomical Journal.

[26]  K. Chambers,et al.  The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS) , 2017, 1702.03665.

[27]  D. Jewitt,et al.  Split Active Asteroid P/2016 J1 (PANSTARRS) , 2017, 1702.02766.

[28]  Robert D. Gehrz,et al.  Mid-infrared spectra of comet nuclei , 2016, 1611.09389.

[29]  D. Jewitt,et al.  NON-GRAVITATIONAL ACCELERATION OF THE ACTIVE ASTEROIDS , 2016, 1612.06920.

[30]  Roberto Rojas,et al.  On-sky commissioning of Hamamatsu CCDs in GMOS-S , 2016, Astronomical Telescopes + Instrumentation.

[31]  N. Haghighipour,et al.  Potential Jupiter-Family Comet Contamination of the Main Asteroid Belt , 2016, 1604.08557.

[32]  S. Sheppard,et al.  The reactivation of main-belt Comet 324P/La Sagra (P/2010 R2) , 2015, 1508.07140.

[33]  D. Jewitt,et al.  NUCLEUS AND MASS LOSS FROM ACTIVE ASTEROID 313P/GIBBS , 2015, 1507.01983.

[34]  W. Burgett,et al.  Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 – Preliminary results , 2015, 1506.00762.

[35]  D. Jewitt,et al.  ARCHIVAL OBSERVATIONS OF ACTIVE ASTEROID 313P/GIBBS , 2015 .

[36]  D. Scheeres Landslides and Mass shedding on spinning spheroidal asteroids , 2014, 1409.4015.

[37]  H. Hsieh The nucleus of main-belt Comet P/2010 R2 (La Sagra) , 2014, 1408.4860.

[38]  Edward W. Dunham,et al.  First-generation instrumentation for the Discovery Channel Telescope , 2014, Astronomical Telescopes and Instrumentation.

[39]  G. Tancredi A criterion to classify asteroids and comets based on the orbital parameters , 2014 .

[40]  R. Wainscoat,et al.  SEARCH FOR THE RETURN OF ACTIVITY IN ACTIVE ASTEROID 176P/LINEAR , 2014, 1408.4865.

[41]  D. Jewitt,et al.  HUBBLE SPACE TELESCOPE INVESTIGATION OF MAIN-BELT COMET 133P/ELST-PIZARRO , 2014, 1402.5571.

[42]  D. Davis,et al.  Effect of rotational disruption on the size–frequency distribution of the Main Belt asteroid population , 2014, 1401.1813.

[43]  Francesca DeMeo,et al.  The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys , 2013, 1307.2424.

[44]  W. Burgett,et al.  OBSERVATIONAL AND DYNAMICAL CHARACTERIZATION OF MAIN-BELT COMET P/2010 R2 (La Sagra) , 2011, 1109.6350.

[45]  Stephen. D. J. Gwyn,et al.  SSOS: A Moving-Object Image Search Tool for Asteroid Precovery , 2011, 1111.3364.

[46]  F. Marzari,et al.  Combined effect of YORP and collisions on the rotation rate of small Main Belt asteroids , 2011 .

[47]  D. Jewitt,et al.  PHYSICAL PROPERTIES OF MAIN-BELT COMET 176P/LINEAR , 2011, 1105.0944.

[48]  H. Boehnhardt,et al.  Testing the comet nature of main belt comets. The spectra of 133P/Elst-Pizarro and 176P/LINEAR , 2011, 1104.0879.

[49]  D. Kelson,et al.  IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .

[50]  A. Coradini,et al.  The activity of Main Belt comets , 2010, 1111.5699.

[51]  Ucla,et al.  The return of activity in main-belt comet 133P/Elst–Pizarro , 2009, 0911.5522.

[52]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[53]  D. Prialnik,et al.  Can ice survive in main‐belt comets? Long‐term evolution models of comet 133P/Elst‐Pizarro , 2009 .

[54]  H. Hsieh The Hawaii Trails Project: Comet-Hunting in the Main Asteroid Belt , 2009, 0907.5505.

[55]  N. Brosch,et al.  Photometry and spin rate distribution of small-sized main belt asteroids , 2008, 0811.1223.

[56]  David Jewitt,et al.  PHYSICAL PROPERTIES OF MAIN-BELT COMET P/2005 U1 (READ) , 2008, 0810.1351.

[57]  N. Schorghofer The Lifetime of Ice on Main Belt Asteroids , 2008 .

[58]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.

[59]  Johan Holmberg,et al.  The colours of the sun , 2005, astro-ph/0511158.

[60]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[61]  E. Grebel,et al.  Empirical color transformations between SDSS photometry and Other photometric systems. , 2005, astro-ph/0609121.

[62]  A. Cheng Collisional evolution of the asteroid belt , 2004 .

[63]  D. Jewitt,et al.  The Strange Case of 133P/Elst-Pizarro: A Comet among the Asteroids , 2004 .

[64]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[65]  Stephan Aune,et al.  MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.

[66]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[67]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[68]  D. Rubincam,et al.  Radiative Spin-up and Spin-down of Small Asteroids , 2000 .

[69]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.