Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity.

Nanosized anatase TiO(2) single crystals with 18% {001} facets have a raised conduction band minimum by 0.1 eV, and exhibit photocatalytic activity both for generating *OH radicals and for splitting water into hydrogen that is markedly superior--by factors of 5.6 and 8.2, respectively--to reference ca. 3 microm anatase TiO(2) with 72% {001} facets.

[1]  Lianzhou Wang,et al.  Titania-based photocatalysts—crystal growth, doping and heterostructuring , 2010 .

[2]  G. Lu,et al.  Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. , 2009, Journal of the American Chemical Society.

[3]  Jimmy C. Yu,et al.  A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. , 2009, Chemical communications.

[4]  Zhaoyang Fan,et al.  A Method for Fabrication of Pyramid-Shaped TiO2 Nanoparticles with a High {001} Facet Percentage , 2009 .

[5]  Sean C. Smith,et al.  Efficient Promotion of Anatase TiO2 Photocatalysis via Bifunctional Surface-Terminating Ti−O−B−N Structures , 2009 .

[6]  Zhigang Chen,et al.  Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states. , 2009, Journal of Colloid and Interface Science.

[7]  B. Ohtani,et al.  Decahedral Single-Crystalline Particles of Anatase Titanium(IV) Oxide with High Photocatalytic Activity , 2009 .

[8]  Claire M. Cobley,et al.  Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. , 2009, Nano letters.

[9]  B. Ohtani,et al.  Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(IV) oxide. , 2009, Chemical Communications.

[10]  Sean C. Smith,et al.  Band-to-Band Visible-Light Photon Excitation and Photoactivity Induced by Homogeneous Nitrogen Doping in Layered Titanates , 2009 .

[11]  Zhaoxiong Xie,et al.  Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. , 2009, Journal of the American Chemical Society.

[12]  M. Antonietti,et al.  Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. , 2009, Journal of the American Chemical Society.

[13]  N. Zheng,et al.  Nonaqueous production of nanostructured anatase with high-energy facets. , 2008, Journal of the American Chemical Society.

[14]  A. Selloni Crystal growth: Anatase shows its reactive side. , 2008, Nature materials.

[15]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[16]  Jianqiang Yu,et al.  Synthesis of Self-Organized Polycrystalline F-doped TiO2 Hollow Microspheres and Their Photocatalytic Activity under Visible Light , 2008 .

[17]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[18]  C. Sanchez,et al.  Nanostructured Titanium Oxynitride Porous Thin Films as Efficient Visible‐Active Photocatalysts , 2007 .

[19]  Galo J. A. A. Soler-Illia,et al.  Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility , 2006 .

[20]  Zhigang Chen,et al.  Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. , 2006, The journal of physical chemistry. B.

[21]  Xue-qing Gong,et al.  Reactivity of anatase TiO(2) nanoparticles: the role of the minority (001) surface. , 2005, The journal of physical chemistry. B.

[22]  P. Albouy,et al.  Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides , 2004, Nature materials.

[23]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[24]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[25]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[26]  Annabella Selloni,et al.  Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .

[27]  N. Serpone,et al.  Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? , 1995 .

[28]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[29]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .