NtrC-sensed nitrogen availability is important for oxidative stress defense in Pseudomonas putida KT2440

[1]  E. Santero,et al.  NtrC-Dependent Regulatory Network for Nitrogen Assimilation in Pseudomonas putida , 2009, Journal of bacteriology.

[2]  J. Ramos,et al.  Regulation of Glucose Metabolism in Pseudomonas , 2009, The Journal of Biological Chemistry.

[3]  Woojun Park,et al.  Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in Pseudomonas putida. , 2008, Microbiology.

[4]  J. Ramos,et al.  A Set of Activators and Repressors Control Peripheral Glucose Pathways in Pseudomonas putida To Yield a Common Central Intermediate , 2008, Journal of bacteriology.

[5]  E. Santero,et al.  Transcriptome Analysis of Pseudomonas putida in Response to Nitrogen Availability , 2007, Journal of bacteriology.

[6]  J. Leigh,et al.  Nitrogen regulation in bacteria and archaea. , 2007, Annual review of microbiology.

[7]  A. Krapp,et al.  Glucose-6-phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli. , 2006, Microbiology.

[8]  Woojun Park,et al.  Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli. , 2006, Biochemical and biophysical research communications.

[9]  Woojun Park,et al.  Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440. , 2006, Biochemical and biophysical research communications.

[10]  A. Ninfa,et al.  PII signal transduction proteins: sensors of alpha-ketoglutarate that regulate nitrogen metabolism. , 2005, Current opinion in microbiology.

[11]  Michael I. Jordan,et al.  Sulfur and Nitrogen Limitation in Escherichia coli K-12: Specific Homeostatic Responses , 2005, Journal of bacteriology.

[12]  J. Imlay,et al.  Pathways of oxidative damage. , 2003, Annual review of microbiology.

[13]  B Demple,et al.  Redox-operated genetic switches: the SoxR and OxyR transcription factors. , 2001, Trends in biotechnology.

[14]  M. Merrick,et al.  PII Signal Transduction Proteins, Pivotal Players in Microbial Nitrogen Control , 2001, Microbiology and Molecular Biology Reviews.

[15]  A. Khodursky,et al.  Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Cabiscol,et al.  Oxidative stress in bacteria and protein damage by reactive oxygen species. , 2000, International microbiology : the official journal of the Spanish Society for Microbiology.

[17]  F. Fang,et al.  Glucose 6-Phosphate Dehydrogenase Is Required forSalmonella typhimurium Virulence and Resistance to Reactive Oxygen and Nitrogen Intermediates , 1999, Infection and Immunity.

[18]  S. C. Winans,et al.  Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. , 1997, Gene.

[19]  R. Edwards,et al.  Nitrogen control in bacteria. , 1995, Microbiological reviews.

[20]  E. Stadtman Protein oxidation and aging. , 1992, Free radical research.

[21]  Wim Crielaard,et al.  Investigation of in vivo cross-talk between key two-component systems of Escherichia coli. , 2002, Microbiology.

[22]  A. Ninfa,et al.  Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. , 2000, Current topics in cellular regulation.

[23]  Ann M Stock,et al.  Two-component signal transduction. , 2000, Annual review of biochemistry.

[24]  B. Demple,et al.  Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon--a review. , 1996, Gene.

[25]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.