Computer-inspired quantum experiments

[1]  Mario Krenn,et al.  Path identity as a source of high-dimensional entanglement , 2020, Proceedings of the National Academy of Sciences.

[2]  L. Lamata Quantum machine learning and quantum biomimetics: A perspective , 2020, Mach. Learn. Sci. Technol..

[3]  S. Kulik,et al.  Improved heralded schemes to generate entangled states from single photons , 2020, 2004.02691.

[4]  V. Vedral,et al.  Machine learning meets quantum foundations: A brief survey , 2020, 2003.11224.

[5]  Liang Jiang,et al.  Efficient cavity control with SNAP gates , 2020, 2004.14256.

[6]  M. Bohmann,et al.  Neural-network approach for identifying nonclassicality from click-counting data , 2020, Physical Review Research.

[7]  John G. Rarity,et al.  Learning models of quantum systems from experiments , 2020, Nature Physics.

[8]  Lukasz Rudnicki,et al.  Five open problems in quantum information , 2020, 2002.03233.

[9]  Barry C. Sanders,et al.  Experimental quantum cloning in a pseudo-unitary system , 2020 .

[10]  Renato Renner,et al.  Operationally meaningful representations of physical systems in neural networks , 2020, Mach. Learn. Sci. Technol..

[11]  Florian Hase,et al.  Automated discovery of superconducting circuits and its application to 4-local coupler design , 2019, 1912.03322.

[12]  F. Marquardt,et al.  Rapid Exploration of Topological Band Structures Using Deep Learning , 2019, 1912.03296.

[13]  Tao Tao,et al.  Three-dimensional entanglement on a silicon chip , 2019, 1911.08807.

[14]  Q. Gong,et al.  Chip-to-chip quantum teleportation and multi-photon entanglement in silicon , 2019, Nature Physics.

[15]  G. Guo,et al.  Progress on Integrated Quantum Photonic Sources with Silicon , 2019, Advanced Quantum Technologies.

[16]  Wojciech M. Czarnecki,et al.  Grandmaster level in StarCraft II using multi-agent reinforcement learning , 2019, Nature.

[17]  Jian-Wei Pan,et al.  Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space. , 2019, Physical review letters.

[18]  Marco Pistoia,et al.  A Domain-agnostic, Noise-resistant Evolutionary Variational Quantum Eigensolver for Hardware-efficient Optimization in the Hilbert Space , 2019, ArXiv.

[19]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[20]  Jay Lawrence,et al.  Many-qutrit Mermin inequalities with three measurement bases , 2019 .

[21]  Mario Krenn,et al.  Computer-Inspired Concept for High-Dimensional Multipartite Quantum Gates. , 2019, Physical review letters.

[22]  Marijn J. H. Heule,et al.  The Resolution of Keller’s Conjecture , 2019, Journal of Automated Reasoning.

[23]  Mario Krenn,et al.  Quantum Optical Experiments Modeled by Long Short-Term Memory , 2019, Photonics.

[24]  Alán Aspuru-Guzik,et al.  Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space , 2019, ICLR.

[25]  Chao Dong,et al.  Identification of light sources using machine learning , 2019, Applied Physics Reviews.

[26]  Wee Ser,et al.  An integrated silicon photonic chip platform for continuous-variable quantum key distribution , 2019, Nature Photonics.

[27]  M. Bourennane,et al.  Experimental test of maximal tripartite nonlocality using an entangled state and local measurements that are maximally incompatible , 2019, Physical Review A.

[28]  Robert Fickler,et al.  High-dimensional quantum gates using full-field spatial modes of photons , 2019, Optica.

[29]  Andrew Forbes,et al.  Ghost imaging using entanglement-swapped photons , 2019, npj Quantum Information.

[30]  N. Bornman,et al.  Ghost imaging using entanglement-swapped photons , 2019, npj Quantum Information.

[31]  Akram Youssry,et al.  Modeling and control of a reconfigurable photonic circuit using deep learning , 2019, Quantum Science and Technology.

[32]  Geoff J. Pryde,et al.  Photonic quantum information processing: A concise review , 2019, Applied Physics Reviews.

[33]  Jian-Wei Pan,et al.  Quantum Teleportation in High Dimensions. , 2019, Physical review letters.

[34]  Robert Wille,et al.  Mapping Quantum Circuits to IBM QX Architectures Using the Minimal Number of SWAP and H Operations , 2019, 2019 56th ACM/IEEE Design Automation Conference (DAC).

[35]  Alán Aspuru-Guzik,et al.  SELFIES: a robust representation of semantically constrained graphs with an example application in chemistry , 2019, ArXiv.

[36]  Dries Vercruysse,et al.  On-chip integrated laser-driven particle accelerator , 2019, Science.

[37]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[38]  Ribana Roscher,et al.  Explainable Machine Learning for Scientific Insights and Discoveries , 2019, IEEE Access.

[39]  Rahul Singh,et al.  Optimization of Heavy-Ion Synchrotrons Using Nature-Inspired Algorithms and Machine Learning , 2019 .

[40]  Norman D. Megill,et al.  Automated generation of Kochen-Specker sets , 2019, Scientific Reports.

[41]  Guang-Can Guo,et al.  Experimental multi-level quantum teleportation , 2019, 1904.12249.

[42]  Hans-J. Briegel,et al.  Machine learning for long-distance quantum communication , 2019, PRX Quantum.

[43]  Fabio Sciarrino,et al.  Calibration of Quantum Sensors by Neural Networks. , 2019, Physical review letters.

[44]  Mario Krenn,et al.  Experimental High-Dimensional Entanglement by Path Identity , 2019, 1904.07851.

[45]  Stanislav Straupe,et al.  Experimental neural network enhanced quantum tomography , 2019, npj Quantum Information.

[46]  Hamel Pierrick,et al.  Klystron efficiency optimization based on a genetic algorithm , 2019, 2019 International Vacuum Electronics Conference (IVEC).

[47]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[48]  Jian-Wei Pan,et al.  On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability. , 2019, Physical review letters.

[49]  Sylvain Gigan,et al.  Programmable linear quantum networks with a multimode fibre , 2019, Nature Photonics.

[50]  Xuemei Gu,et al.  Questions on the Structure of Perfect Matchings Inspired by Quantum Physics , 2019, Proceedings of the 2nd Croatian Combinatorial Days.

[51]  Leroy Cronin,et al.  How to explore chemical space using algorithms and automation , 2019, Nature Reviews Chemistry.

[52]  Yurii S. Moroz,et al.  Ultra-large library docking for discovering new chemotypes , 2019, Nature.

[53]  Mario Krenn,et al.  Quantum experiments and graphs. III. High-dimensional and multiparticle entanglement , 2018, Physical Review A.

[54]  D Ahn,et al.  Adaptive Compressive Tomography with No a priori Information. , 2018, Physical review letters.

[55]  R. Nichols,et al.  A hybrid machine learning algorithm for designing quantum experiments , 2018, Quantum Machine Intelligence.

[56]  Demis Hassabis,et al.  A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play , 2018, Science.

[57]  Dries Vercruysse,et al.  Inverse-designed diamond photonics , 2018, Nature Communications.

[58]  Dries Vercruysse,et al.  Optimized diamond quantum photonics , 2018, Symposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications.

[59]  Kunkun Wang,et al.  Observation of Critical Phenomena in Parity-Time-Symmetric Quantum Dynamics. , 2018, Physical review letters.

[60]  J. Matthews,et al.  Designing quantum experiments with a genetic algorithm , 2018, Quantum Science and Technology.

[61]  A. Zeilinger,et al.  Arbitrary d -dimensional Pauli X gates of a flying qudit , 2018, Physical Review A.

[62]  Mario Krenn,et al.  Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits , 2018, Nature Photonics.

[63]  Yuebing Zheng,et al.  Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale , 2018, Nanophotonics.

[64]  Jan H. Jensen,et al.  A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space , 2018, Chemical science.

[65]  C. Weedbrook,et al.  Production of photonic universal quantum gates enhanced by machine learning , 2018, Physical Review A.

[66]  Giovanni De Micheli,et al.  SAT-based {CNOT, T} Quantum Circuit Synthesis , 2018, RC.

[67]  Graham D. Marshall,et al.  Large-scale silicon quantum photonics implementing arbitrary two-qubit processing , 2018, Nature Photonics.

[68]  Alexei A. Efros,et al.  Large-Scale Study of Curiosity-Driven Learning , 2018, ICLR.

[69]  Renato Renner,et al.  Discovering physical concepts with neural networks , 2018, Physical review letters.

[70]  Juan Miguel Arrazola,et al.  Machine learning method for state preparation and gate synthesis on photonic quantum computers , 2018, Quantum Science and Technology.

[71]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[72]  Guy Lever,et al.  Human-level performance in 3D multiplayer games with population-based reinforcement learning , 2018, Science.

[73]  Seth Lloyd,et al.  Continuous-variable quantum neural networks , 2018, Physical Review Research.

[74]  Yongjun Li,et al.  Genetic algorithm enhanced by machine learning in dynamic aperture optimization , 2018, Physical Review Accelerators and Beams.

[75]  Dzung Viet Dao,et al.  Integrated photonic platform for quantum information with continuous variables , 2018, Science Advances.

[76]  N. Killoran,et al.  Strawberry Fields: A Software Platform for Photonic Quantum Computing , 2018, Quantum.

[77]  H. Neven,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[78]  Mario Krenn,et al.  Quantum experiments and graphs II: Quantum interference, computation, and state generation , 2018, Proceedings of the National Academy of Sciences.

[79]  Nicolas K. Fontaine,et al.  Laguerre-Gaussian mode sorter , 2018, Nature Communications.

[80]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[81]  Risto Miikkulainen,et al.  The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities , 2018, Artificial Life.

[82]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[83]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[84]  Roger B. Grosse,et al.  Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.

[85]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[86]  Dana Z. Anderson,et al.  Experimental Demonstration of Shaken-Lattice Interferometry. , 2018, Physical review letters.

[87]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[88]  Jian-Wei Pan,et al.  18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. , 2018, Physical review letters.

[89]  Steven L. Brunton,et al.  Deep learning for universal linear embeddings of nonlinear dynamics , 2017, Nature Communications.

[90]  Carsten Rockstuhl,et al.  Quantum optical realization of arbitrary linear transformations allowing for loss and gain , 2017, 1712.01413.

[91]  Dmitri Maslov,et al.  Automated optimization of large quantum circuits with continuous parameters , 2017, npj Quantum Information.

[92]  Ole Sigmund,et al.  Giga-voxel computational morphogenesis for structural design , 2017, Nature.

[93]  Matej Pivoluska,et al.  Measurements in two bases are sufficient for certifying high-dimensional entanglement , 2017, Nature Physics.

[94]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[95]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer , 2017, 1709.08809.

[96]  Dirk Timmermann,et al.  Major results from the first plasma campaign of the Wendelstein 7-X stellarator , 2017 .

[97]  Oliver Kullmann,et al.  The science of brute force , 2017, Commun. ACM.

[98]  Mario Krenn,et al.  Generation of the Complete Four-dimensional Bell Basis , 2017, 1707.05760.

[99]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[100]  Mario Krenn,et al.  Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings. , 2017, Physical review letters.

[101]  Alexei A. Efros,et al.  Curiosity-Driven Exploration by Self-Supervised Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[102]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[103]  Derryck T. Reid,et al.  Pure down-conversion photons through sub-coherence-length domain engineering , 2017, 1704.03683.

[104]  J. Rarity,et al.  Experimental quantum Hamiltonian learning , 2017, Nature Physics.

[105]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[106]  A. Zeilinger,et al.  High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments. , 2017, Physical review letters.

[107]  S. Gigan,et al.  Light fields in complex media: Mesoscopic scattering meets wave control , 2017, 1702.05395.

[108]  R. Boyd,et al.  Custom-tailored spatial mode sorting by controlled random scattering , 2017, 1701.05889.

[109]  Nengchao Wang,et al.  Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000 , 2016, Nature Communications.

[110]  I. Sagnes,et al.  Active demultiplexing of single photons from a solid‐state source , 2016, 1611.02294.

[111]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[112]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[113]  Mario Krenn,et al.  Entanglement by Path Identity. , 2016, Physical review letters.

[114]  Ryan P. Adams,et al.  Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. , 2016, Nature materials.

[115]  Victor W. Marek,et al.  Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer , 2016, SAT.

[116]  Laurent Villard,et al.  Computational challenges in magnetic-confinement fusion physics , 2016, Nature Physics.

[117]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[118]  Dmitri Maslov,et al.  Basic circuit compilation techniques for an ion-trap quantum machine , 2016, ArXiv.

[119]  Daniel Nigg,et al.  Compiling quantum algorithms for architectures with multi-qubit gates , 2016, 1601.06819.

[120]  Robert Fickler,et al.  Cyclic transformation of orbital angular momentum modes , 2015, 1512.02696.

[121]  Jing Liu,et al.  A search algorithm for quantum state engineering and metrology , 2015, 1511.05327.

[122]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[123]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[124]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[125]  Nicolai Friis,et al.  Coherent controlization using superconducting qubits , 2015, Scientific Reports.

[126]  J. Latorre,et al.  Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices , 2015, 1506.08857.

[127]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[128]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[129]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[130]  Peng Wang,et al.  Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. , 2014, Optics express.

[131]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[132]  Peter van Loock,et al.  Near-deterministic creation of universal cluster states with probabilistic Bell measurements and three-qubit resource states , 2014, 1410.3753.

[133]  Martin Rötteler,et al.  Efficient synthesis of probabilistic quantum circuits with fallback , 2014, ArXiv.

[134]  Per Helander,et al.  Theory of plasma confinement in non-axisymmetric magnetic fields , 2014, Reports on progress in physics. Physical Society.

[135]  N. C. Menicucci,et al.  Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. , 2013, Physical review letters.

[136]  Kurt Maute,et al.  Level-set methods for structural topology optimization: a review , 2013 .

[137]  Xu Chen,et al.  Hybrid gradient particle swarm optimization for dynamic optimization problems of chemical processes , 2013 .

[138]  R. Drechsler,et al.  A compact and efficient SAT encoding for quantum circuits , 2013, 2013 Africon.

[139]  Jay Lawrence,et al.  Rotational covariance and Greenberger-Horne-Zeilinger theorems for three or more particles of any dimension , 2013, 1308.3808.

[140]  Marcus Huber,et al.  Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems , 2013, 1307.3541.

[141]  P. Wipf,et al.  Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds. , 2013, Journal of the American Chemical Society.

[142]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[143]  Marek Żukowski,et al.  Multisetting Greenberger-Horne-Zeilinger theorem , 2013, 1303.7222.

[144]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[145]  Hans J. Briegel,et al.  On creative machines and the physical origins of freedom , 2012, Scientific Reports.

[146]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[147]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.

[148]  John F. Hartwig,et al.  A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions , 2011, Science.

[149]  Noel M. O'Boyle,et al.  Computational Design and Selection of Optimal Organic Photovoltaic Materials , 2011 .

[150]  Ole Sigmund,et al.  On the usefulness of non-gradient approaches in topology optimization , 2011 .

[151]  Hans J. Briegel,et al.  Projective simulation for artificial intelligence , 2011, Scientific Reports.

[152]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[153]  Jürgen Schmidhuber,et al.  Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010) , 2010, IEEE Transactions on Autonomous Mental Development.

[154]  Pu Jian,et al.  Programmable unitary spatial mode manipulation. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[155]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[156]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[157]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[158]  M. Nielsen,et al.  The Solovay-Kitaev algorithm , 2005, Quantum Inf. Comput..

[159]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[160]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[161]  Peter J. Bentley,et al.  Introduction to creative evolutionary systems , 2001 .

[162]  Mary Sheeran,et al.  Checking Safety Properties Using Induction and a SAT-Solver , 2000, FMCAD.

[163]  Peter J. Bentley,et al.  Aspects of Evolutionary Design by Computers , 1998, ArXiv.

[164]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[165]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[166]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[167]  Jürgen Schmidhuber,et al.  Curious model-building control systems , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[168]  L. Mandel,et al.  Induced coherence and indistinguishability in optical interference. , 1991, Physical review letters.

[169]  Jürgen Schmidhuber,et al.  A possibility for implementing curiosity and boredom in model-building neural controllers , 1991 .

[170]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[171]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[172]  Yves Roblin,et al.  Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics , 2013 .

[173]  M. Bendsøe Topology Optimization , 2009, Encyclopedia of Optimization.

[174]  M. Chial,et al.  in simple , 2003 .

[175]  Roberto Frias,et al.  A brief survey , 2011 .

[176]  Peter J. Bentley,et al.  Evolutionary Design By Computers , 1999 .

[177]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[178]  W. Heisenberg,et al.  Psoriasis - a review of recent progress, characteristics, diagnostic management , 2022, Journal of Education, Health and Sport.

[179]  E. P. Lewis In perspective. , 1972, Nursing outlook.