Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thin‐Film Transistors

The role of the substrate temperature on the structural, optical, and electronic properties of ZnO thin films deposited by spray pyrolysis using a zinc acetate precursor solution is reported. Analysis of the precursor compound using thermogravimentry and differential scanning calorimetry indicates complete decomposition of the precursor at around 350 degrees C. Film characterization using Fourier Transform Infrared Spectroscopy (FTIR), photoluminescence spectroscopy (PL), and ultraviolet-visible (UV-Vis) optical transmission spectroscopy suggests the onset of ZnO growth at temperatures as low as 100 degrees C as well as the transformation to a polycrystalline phase at deposition temperatures >200 degrees C. Atomic force microscopy (AFM) and X-ray diffraction (XRD) reveal that as-deposited films exhibit low surface roughness (rms approximate to 2.9 nm at 500 degrees C) and a crystal size that is monotonously increasing from 8 to 32 nm for deposition temperatures in the range of 200-500 degrees C. The latter appears to have a direct impact on the field-effect electron mobility, which is found to increase with increasing ZnO crystal size. The maximum mobility and current on/off ratio is obtained from thin-film transistors fabricated using ZnO films deposited at >400 degrees C yielding values on the order of 25 cm(2) V(-1)s(-1) and 10(6), respectively.

[1]  Oliver Soffke,et al.  A Printed and Flexible Field‐Effect Transistor Device with Nanoscale Zinc Oxide as Active Semiconductor Material , 2008 .

[2]  X. Tong,et al.  Structural characterization and optoelectronic properties of GaN thin films on Si(111) substrates using pulsed laser deposition assisted by gas discharge , 2004 .

[3]  Y. Ling,et al.  Simultaneous thermogravimetric analysis and in situ thermo-Raman spectroscopic investigation of thermal decomposition of zinc acetate dihydrate forming zinc oxide nanoparticles , 2003 .

[4]  Kelvin G. Lynn,et al.  Infrared spectroscopy of hydrogen in ZnO , 2002 .

[5]  A. Facchetti,et al.  High-performance transparent inorganic–organic hybrid thin-film n-type transistors , 2006, Nature materials.

[6]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[7]  R. Navamathavan,et al.  Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering , 2008 .

[8]  Pedro Barquinha,et al.  Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature , 2004 .

[9]  J. Kadokawa,et al.  Effects of Zinc on the New Preparation Method of Hydroxy Double Salts , 1999 .

[10]  E. Fortunato,et al.  Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs , 2007 .

[11]  Takafumi Yao,et al.  Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization , 1998 .

[12]  R. M. Wolf,et al.  A ferroelectric transparent thin‐film transistor , 1996 .

[13]  Zachary L. Mensinger,et al.  Synthesis of heterometallic group 13 nanoclusters and inks for oxide thin-film transistors. , 2008, Angewandte Chemie.

[14]  R. Hoffman ZnO-channel thin-film transistors: Channel mobility , 2004 .

[15]  X. Q. Wei,et al.  Effects of substrate parameters on structure and optical properties of ZnO thin films fabricated by pulsed laser deposition , 2010 .

[16]  R. Nakai,et al.  Isotopic Tracer Studies of the Ketonic Pyrolysis of Sodium Carboxylates , 1959 .

[17]  M. Miki-Yoshida,et al.  Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis , 1999 .

[18]  B. Bae,et al.  High performance solution-processed amorphous zinc tin oxide thin film transistor , 2009 .

[19]  Zhiyong Wang,et al.  Kinetic analysis on the non-isothermal dehydration by integral master-plots method and TG–FTIR study of zinc acetate dihydrate , 2008 .

[20]  V. Ponec,et al.  Reactions of Carboxylic Acids on Oxides: 2. Bimolecular Reaction of Aliphatic Acids to Ketones , 1997 .

[21]  E. J. Sonneveld,et al.  Automatic collection of powder data from photographs , 1975 .

[22]  Pedro Barquinha,et al.  Toward High-Performance Amorphous GIZO TFTs , 2009 .

[23]  Chunzhong Li,et al.  Acetate-derived ZnO ultrafine particles synthesized by spray pyrolysis , 1998 .

[24]  A. Facchetti,et al.  Flexible Inorganic/Organic Hybrid Thin‐Film Transistors Using All‐Transparent Component Materials , 2007 .

[25]  Tobin J. Marks,et al.  High performance solution-processed indium oxide thin-film transistors. , 2008, Journal of the American Chemical Society.

[26]  Paul H. Wöbkenberg,et al.  High‐Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere , 2009 .

[27]  E. Tokumitsu,et al.  Ferroelectric-gate thin-film transistors using indium-tin-oxide channel with large charge controllability , 2005 .

[28]  T. Sekiguchi,et al.  Band-edge emission of undoped and doped ZnO single crystals at room temperature , 2002 .

[29]  Yuning Li,et al.  Stable, solution-processed, high-mobility ZnO thin-film transistors. , 2007, Journal of the American Chemical Society.

[30]  D. Zhao,et al.  Investigation of optical and electrical properties of ZnO ultrafine particle films prepared by direct current gas discharge activated reactive method , 1994 .

[31]  Yusaburo Segawa,et al.  Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers , 2001 .

[32]  Chi-Sun Hwang,et al.  Transparent ZnO-TFT Arrays Fabricated by Atomic Layer Deposition , 2008 .

[33]  S. Pearton,et al.  Hydrogen local modes and shallow donors in ZnO , 2005 .

[34]  Energy and momentum deposition from pulsed optical lattices to nonionized gases , 2007 .

[35]  Kyoung-Kok Kim,et al.  Photoluminescence and heteroepitaxy of ZnO on sapphire substrate (0001) grown by rf magnetron sputtering , 2000 .

[36]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[37]  O. Seo,et al.  Enhancement-Mode ZnO Thin-Film Transistor Grown by Metalorganic Chemical Vapor Deposition , 2008 .

[38]  Y. Segawa,et al.  Plasma-assisted molecular-beam epitaxy of ZnO epilayers on atomically flat MgAl2O4(111) substrates , 2000 .

[39]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[40]  Masashi Kawasaki,et al.  High Mobility Thin Film Transistors with Transparent ZnO Channels , 2003 .

[41]  Kenji Ebihara,et al.  Application of pulsed laser deposited zinc oxide films to thin film transistor device , 2008 .

[42]  M. A. Mohamed,et al.  Ketonization of acetic acid vapour over polycrystalline magnesia : in situ Fourier transform infrared spectroscopy and kinetic studies , 2005 .

[43]  Myung-Gil Kim,et al.  Low-temperature solution-processed amorphous indium tin oxide field-effect transistors. , 2009, Journal of the American Chemical Society.

[44]  E. Kandare,et al.  Thermal degradation of acetate-intercalated hydroxy double and layered hydroxy salts. , 2006, Inorganic chemistry.

[45]  Paul H. Wöbkenberg,et al.  Electronic properties of ZnO field-effect transistors fabricated by spray pyrolysis in ambient air , 2009 .

[46]  A. M. Saitta,et al.  High-pressure Raman spectroscopy study of wurtzite ZnO , 2002 .

[47]  H. P. Schultz,et al.  Studies of Thermal Decarboxylation of Iron Carboxylates. I. Preparation of Symmetrical Aliphatic Ketones1,2 , 1962 .

[48]  D. Clarke,et al.  ANOMALOUS BEHAVIOR OF THE OPTICAL BAND GAP OF NANOCRYSTALLINE ZINC OXIDE THIN FILMS , 1997 .

[49]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[50]  David R. Clarke,et al.  On the optical band gap of zinc oxide , 1998 .

[51]  H. Katz,et al.  Solution‐Deposited Zinc Oxide and Zinc Oxide/Pentacene Bilayer Transistors: High Mobility n‐Channel, Ambipolar, and Nonvolatile Devices , 2008 .