Hyperspectral Imaging and Obstacle Detection for Robotics Navigation
暂无分享,去创建一个
N. Nasrabadi | H. Kwon | D. Rosario | P. Gillespie | N. Gupta | Matthew Thielke | Dale Smith | Partick Rauss
[1] Heesung Kwon,et al. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.
[2] D. Rosario. Innovative Statistical Inference for Anomaly Detection in Hyperspectral Imagery , 2004 .
[3] Dalton S. Rosario. Highly effective logistic regression model for signal (anomaly) detection , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[4] M. Hinnrichs,et al. Dual band (MWIR/LWIR) hyperspectral imager , 2003, 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings..
[5] Alexander J. Smola,et al. Learning with kernels , 1998 .
[6] Bernhard Schölkopf,et al. Kernel Principal Component Analysis , 1997, ICANN.
[7] J. Qin,et al. A goodness-of-fit test for logistic regression models based on case-control data , 1997 .
[8] Xiaoli Yu,et al. Automatic target detection and recognition in multiband imagery: a unified ML detection and estimation approach , 1997, IEEE Trans. Image Process..