PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set
暂无分享,去创建一个
Antoine Masse | Danielle Ducrot | Cécile Gomez | D. Ducrot | C. Gomez | Anis Gasmi | Hédi Zouari | A. Gasmi | H. Zouari | A. Masse
[1] Stefan Erasmi,et al. Mapping patterns of mineral alteration in volcanic terrains using ASTER data and field spectrometry in Southern Peru , 2013 .
[2] Chih-Jen Lin,et al. A Practical Guide to Support Vector Classication , 2008 .
[3] J. Huntington,et al. Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).
[4] David W. Leverington,et al. Please Scroll down for Article International Journal of Remote Sensing Discrimination of Sedimentary Lithologies Using Hyperion and Landsat Thematic Mapper Data: a Case Study at Melville Island, Canadian High Arctic Discrimination of Sedimentary Lithologies Using Hyperion and Landsat Thematic Mapper , 2022 .
[5] Simon J. Hook,et al. Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .
[6] Mazlan Hashim,et al. Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran , 2014 .
[7] Akira Iwasaki,et al. Validation of a crosstalk correction algorithm for ASTER/SWIR , 2005, IEEE Transactions on Geoscience and Remote Sensing.
[8] G. Hunt. Near-infrared (1.3-2.4 mu m) spectra of alteration minerals; potential for use in remote sensing , 1979 .
[9] K. Watson. Geologic applications of thermal infrared images , 1975, Proceedings of the IEEE.
[10] Joaquin Melia,et al. Weathering process effects on spectral reflectance of rocks in a semi-arid environment , 1997 .
[11] J. Mustard,et al. Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .
[12] Li Pei. Ophiolite mapping using ASTER data:a case study of Derni ophiolite complex. , 2007 .
[13] Sukumar Bandopadhyay,et al. An Objective Analysis of Support Vector Machine Based Classification for Remote Sensing , 2008 .
[14] R. Lyon. Infrared Spectral Emittance in Geological Mapping: Airborne Spectrometer Data from Pisgah Crater, California , 1972, Science.
[15] Yasushi Yamaguchi,et al. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..
[16] John A. Richards,et al. Remote Sensing Digital Image Analysis , 1986 .
[17] Mazlan Hashim,et al. Spectral transformation of ASTER data and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran , 2011 .
[18] M. Ishii,et al. Mineral and lithological mapping using thermal infrared remotely sensed data from ASTER simulator , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.
[19] Christophe Delacourt,et al. Using ASTER remote sensing data set for geological mapping, in Namibia , 2005 .
[20] Shuhab D. Khan,et al. Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data , 2007 .
[21] A. Ono,et al. Observational performance of ASTER instrument on EOS-AM1 spacecraft , 1994 .
[22] C. Pieters,et al. A Spectral, Chemical and Mineralogical Study of Mars Analogue Rocks , 2002 .
[23] A. Goetz,et al. Thermal inertia imaging: A new geologic mapping tool , 1976 .
[24] Hiroyuki Fujisada,et al. Design and performance of ASTER instrument , 1995, Remote Sensing.
[25] G. Hunt. SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .
[26] Le Yu,et al. Towards automatic lithological classification from remote sensing data using support vector machines , 2010, Comput. Geosci..
[27] Taskin Kavzoglu,et al. A kernel functions analysis for support vector machines for land cover classification , 2009, Int. J. Appl. Earth Obs. Geoinformation.