Single-Image Vignetting Correction

In this paper, we propose a method for robustly determining the vignetting function given only a single image. Our method is designed to handle both textured and untextured regions in order to maximize the use of available information. To extract vignetting information from an image, we present adaptations of segmentation techniques that locate image regions with reliable data for vignetting estimation. Within each image region, our method capitalizes on the frequency characteristics and physical properties of vignetting to distinguish it from other sources of intensity variation. Rejection of outlier pixels is applied to improve the robustness of vignetting estimation. Comprehensive experiments demonstrate the effectiveness of this technique on a broad range of images with both simulated and natural vignetting effects. Causes of failures using the proposed algorithm are also analyzed.

[1]  Ming Tang,et al.  General Scheme of Region Competition Based on Scale Space , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  William T. Freeman,et al.  Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  Jung Soh,et al.  Vignetting distortion correction method for high quality digital imaging , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[4]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[5]  Aditi Majumder,et al.  Photometric Self-Calibration of a Projector-Camera System , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Chi-Keung Tang,et al.  Tensor voting for image correction by global and local intensity alignment , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  P. Jonathon Phillips,et al.  Empirical Evaluation Methods in Computer Vision , 2002 .

[8]  Wonpil Yu,et al.  Practical anti-vignetting methods for digital cameras , 2004, IEEE Trans. Consumer Electron..

[9]  Dan B. Goldman,et al.  Vignette and exposure calibration and compensation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[10]  Masashi Baba,et al.  Photometric calibration of zoom lens systems , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[11]  S. Qin,et al.  Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods† , 1999 .

[12]  Vladimir Kolmogorov,et al.  Spatially coherent clustering using graph cuts , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[14]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[15]  Guillermo Sapiro,et al.  Edges as Outliers: Anisotropic Smoothing Using Local Image Statistics , 1999, Scale-Space.

[16]  Alexander A. Sawchuk,et al.  Real-Time Correction of Intensity Nonlinearities in Imaging Systems , 1977, IEEE Transactions on Computers.

[17]  Takeo Kanade,et al.  Statistical Calibration of the CCD Imaging Process , 2001, ICCV.

[18]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[19]  Yoav Y. Schechner,et al.  Addressing radiometric nonidealities: a unified framework , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[21]  Stephen Lin,et al.  Single-Image Vignetting Correction , 2006, CVPR.

[22]  Sing Bing Kang,et al.  Can We Calibrate a Camera Using an Image of a Flat, Textureless Lambertian Surface? , 2000, ECCV.

[23]  Takeo Kanade,et al.  Statistical calibration of CCD imaging process , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[24]  Heung-Yeung Shum,et al.  Radiometric calibration from a single image , 2004, CVPR 2004.

[25]  Marc Pollefeys,et al.  Robust Radiometric Calibration and Vignetting Correction , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Bruce A. Draper,et al.  Analyzing PCA-based Face Recognition Algorithms: Eigenvector Selection and Distance Measures , 2003 .

[27]  Richard Szeliski,et al.  Noise Estimation from a Single Image , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[28]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[30]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[32]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..