Environmental controls and reaction pathways of coupled de-dolomitization and thaumasite formation

[1]  R. Snellings,et al.  The pore solution of blended cements: a review , 2016 .

[2]  K. Dvořák,et al.  Synthetic Preparation of Thaumasite – Several Possible Routes for Thaumasite Formation☆ , 2016 .

[3]  F. Mittermayr,et al.  Rapid ikaite (CaCO3·6H2O) crystallization in a man-made river bed: Hydrogeochemical monitoring of a rarely documented mineral formation , 2015 .

[4]  H. Strauss,et al.  The role of bacterial sulfate reduction during dolomite precipitation: Implications from Upper Jurassic platform carbonates , 2015 .

[5]  B. Lothenbach,et al.  Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure , 2015 .

[6]  T. Proske,et al.  Sulfate resistance of cement-reduced eco-friendly concretes , 2015 .

[7]  F. Mittermayr,et al.  Concrete Corrosion in Tunnels: A Stable O and H Isotope Study of TSA Mechanism , 2015 .

[8]  C. Grengg,et al.  Stable Isotope Signatures within Microbial Induced Concrete Corrosion: A Field Study , 2015 .

[9]  M. Bassuoni,et al.  Thaumasite sulfate attack on concrete: Mechanisms, influential factors and mitigation , 2014 .

[10]  M. Zając,et al.  Effect of CaMg(CO3)2 on hydrate assemblages and mechanical properties of hydrated cement pastes at 40 °C and 60 °C , 2014 .

[11]  P. Štukovnik,et al.  Alkali-carbonate reaction in concrete and its implications for a high rate of long-term compressive strength increase , 2014 .

[12]  S. Pejovnik,et al.  Observations on dedolomitization of carbonate concrete aggregates, implications for ACR and expansion , 2013 .

[13]  W. Müllauer,et al.  Sulfate attack expansion mechanisms , 2013 .

[14]  A. Leis,et al.  Calcium carbonate scaling under alkaline conditions – Case studies and hydrochemical modelling , 2013 .

[15]  R. Hooton,et al.  Sulfate resistance of Portland-limestone cements in combination with supplementary cementitious materials , 2013 .

[16]  F. Mittermayr,et al.  Evaporation — a key mechanism for the thaumasite form of sulfate attack , 2013 .

[17]  M. Dietzel,et al.  The Rate and Mechanism of Deep-Sea Glauconite Formation at the Ivory Coast-Ghana Marginal Ridge , 2013, Clays and Clay Minerals.

[18]  B. Lothenbach,et al.  On the relevance of volume increase for the length changes of mortar bars in sulfate solutions , 2013 .

[19]  R. Hooton,et al.  Thaumasite sulfate attack in Portland and Portland-limestone cement mortars exposed to sulfate solution , 2013 .

[20]  F. Mittermayr,et al.  Concrete under sulphate attack: an isotope study on sulphur sources , 2012, Isotopes in environmental and health studies.

[21]  Duncan Herfort,et al.  Thermodynamics and cement science , 2011 .

[22]  Jian-qin Ma Application of Shotcrete Linings under Sulfate Attack Environments , 2011 .

[23]  Roman Loser,et al.  Analysis of concrete in a vertical ventilation shaft exposed to sulfate-containing groundwater for 45 years , 2011 .

[24]  L. Warr,et al.  Geoscientific Applications of Particle Detection and Imaging Techniques with Special Focus on the Monitoring Clay Mineral Reactions , 2011 .

[25]  Nikos Leterrier,et al.  Sulfate ingress in Portland cement , 2010 .

[26]  T. Katayama The So-called Alkali-carbonate Reaction (ACR): Its Mineralogical and Geochemical Details, With Special Reference to ASR , 2010 .

[27]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[28]  B. Lothenbach,et al.  Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements , 2009 .

[29]  Magdalena Balonis,et al.  The density of cement phases , 2009 .

[30]  P. Hagelia,et al.  Thaumasite Sulfate Attack, Popcorn Calcite Deposition and acid attack in concrete stored at the «Blindtarmen» test site Oslo, from 1952 to 1982 , 2009 .

[31]  Edgardo F. Irassar,et al.  Sulfate attack on cementitious materials containing limestone filler — A review , 2009 .

[32]  B. Lothenbach,et al.  The influence of potassium–sodium ratio in cement on concrete expansion due to alkali-aggregate reaction , 2008 .

[33]  A. Shayan,et al.  Effects of seawater on AAR expansion of concrete , 2008 .

[34]  Karen Scrivener,et al.  A thermodynamic and experimental study of the conditions of thaumasite formation , 2008 .

[35]  I. Richardson The calcium silicate hydrates , 2008 .

[36]  E. Samson,et al.  Durability of concrete — Degradation phenomena involving detrimental chemical reactions , 2008 .

[37]  Seung-Tae Lee,et al.  Effect of limestone filler on the deterioration of mortars and pastes exposed to sulfate solutions at ambient temperature , 2008 .

[38]  Ruben Kretzschmar,et al.  Solubility of Fe–ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) , 2008 .

[39]  A. M. López-Buendía,et al.  Lithological influence of aggregate in the alkali-carbonate reaction , 2006 .

[40]  Liudvikas Urbonas,et al.  Effect of ettringite on thaumasite formation , 2006 .

[41]  Xiaojian Gao,et al.  Thaumasite formation in a tunnel of Bapanxia Dam in Western China , 2006 .

[42]  Oleg S. Pokrovsky,et al.  Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2 , 2005 .

[43]  P. Spry,et al.  THE FORMATION AND ROLE OF ETTRINGITE IN IOWA HIGHWAY CONCRETE DETERIORATION , 2005 .

[44]  F. Glasser,et al.  Synthesis and characterisation of magnesium silicate hydrate gels , 2005 .

[45]  T. Katayama How to identify carbonate rock reactions in concrete , 2004 .

[46]  S. Sahu,et al.  Mechanism of concrete deterioration due to salt crystallization , 2004 .

[47]  G. Scherer Stress from crystallization of salt , 2004 .

[48]  R. Bleszynski,et al.  Occurrences of thaumasite in laboratory and field concrete , 2003 .

[49]  Lorenz Holzer,et al.  Swiss tunnel structures: concrete damage by formation of thaumasite , 2003 .

[50]  R. Gollop,et al.  A thermodynamic model for predicting the stability of thaumasite , 2003 .

[51]  T. Longworth,et al.  Thaumasite field trial at Shipston on Stour: three-year preliminary assessment of buried concretes , 2003 .

[52]  D. Macphee,et al.  Extent of immiscibility in the ettringite–thaumasite system , 2003 .

[53]  M. Romer STEAM LOCOMOTIVE SOOT AND THE FORMATION OF THAUMASITE IN SHOTCRETE , 2003 .

[54]  A. Busetto,et al.  Thaumasite as decay product of cement mortar in brick masonry of a church near Venice , 2003 .

[55]  D. Hobbs THAUMASITE SULFATE ATTACK IN FIELD AND LABORATORY CONCRETES: IMPLICATIONS FOR SPECIFICATIONS , 2003 .

[56]  John Bensted,et al.  Thaumasite––direct, woodfordite and other possible formation routes , 2003 .

[57]  E. Garcı́a,et al.  DEDOLOMITIZATION IN DIFFERENT ALKALINE MEDIA: APPLICATION TO PORTLAND CEMENT PASTE , 2003 .

[58]  E. Garcı́a,et al.  Surface alteration of dolomite in dedolomitization reaction in alkaline media , 2003 .

[59]  Edgardo F. Irassar,et al.  MICROSTRUCTURAL STUDY OF SULFATE ATTACK ON ORDINARY AND LIMESTONE PORTLAND CEMENTS AT AMBIENT TEMPERATURE , 2003 .

[60]  N. J. Crammond,et al.  The occurrence of thaumasite in modern construction – a review , 2002 .

[61]  M. Deng,et al.  A new accelerated method for determining the potential alkali-carbonate reactivity , 2002 .

[62]  O. Pokrovsky,et al.  Kinetics and Mechanism of Dolomite Dissolution in Neutral to Alkaline Solutions Revisited , 2001 .

[63]  P. Alfonso,et al.  Kinetics of dolomite-portlandite reaction. Application to portland cement concrete , 2001 .

[64]  N. Crammond,et al.  The formation of thaumasite in a cement:lime:sand mortar exposed to cold magnesium and potassium sulfate solutions , 2000 .

[65]  D. Hobbs,et al.  Nature of the thaumasite sulfate attack mechanism in field concrete , 2000 .

[66]  R. Swamy,et al.  Thaumasite formation in Portland-limestone cement pastes , 1999 .

[67]  J. Bensted Thaumasite — background and nature in deterioration of cements, mortars and concretes , 1999 .

[68]  D. Hobbs,et al.  Performance of Portland limestone cements in mortar prisms immersed in sulfate solutions at 5 °C , 1999 .

[69]  Terry J. Logan,et al.  Ettringite solubility and geochemistry of the Ca(OH)2-Al2(SO4)3-H2O system at 1 atm pressure and 298 K , 1998 .

[70]  M. Tang,et al.  A case study of two airport runways affected by alkali-carbonate reaction part two: Microstructural investigations , 1997 .

[71]  J. E. Gillott,et al.  Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete , 1996 .

[72]  C. Appelo,et al.  Geochemistry, groundwater and pollution , 1993 .

[73]  Josef Tritthart,et al.  Chloride binding in cement I. Investigations to determine the composition of porewater in hardened cement , 1989 .

[74]  W. Lukas Betonzerstörung durch SO3-angriff unter bildung von thaumasit und woodfordit , 1975 .