Chemical remodelling of cell surfaces in living animals

[1]  C. Bertozzi,et al.  Metabolic functionalization of recombinant glycoproteins. , 2004, Biochemistry.

[2]  R. Breinbauer,et al.  The Staudinger ligation-a gift to chemical biology. , 2004, Angewandte Chemie.

[3]  B. Pan,et al.  Nature of single vacancy in achiral carbon nanotubes. , 2004, Physical review letters.

[4]  A. Krasheninnikov,et al.  Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies , 2004 .

[5]  Ajit Varki,et al.  Perspectives on the significance of altered glycosylation of glycoproteins in cancer , 1997, Glycoconjugate Journal.

[6]  E. R. Soares Identification of a new allele of Es-1 segregating in an inbred strain of mice , 1979, Biochemical Genetics.

[7]  H. Kolb,et al.  The growing impact of click chemistry on drug discovery. , 2003, Drug discovery today.

[8]  Chong Yu,et al.  A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J L Hutchison,et al.  A composite method for the determination of the chirality of single walled carbon nanotubes , 2003, Journal of microscopy.

[10]  Patrick R. Briddon,et al.  Structure and energetics of the vacancy in graphite , 2003 .

[11]  C. Bertozzi,et al.  Metabolic oligosaccharide engineering as a tool for glycobiology. , 2003, Current opinion in chemical biology.

[12]  Benedikt M Kessler,et al.  Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy. , 2003, Angewandte Chemie.

[13]  Carolyn R Bertozzi,et al.  A chemical approach for identifying O-GlcNAc-modified proteins in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Telling,et al.  Metastable Frenkel pair defect in graphite: source of Wigner energy? , 2003, Physical Review Letters.

[15]  A. Krasheninnikov,et al.  Magnetic properties and diffusion of adatoms on a graphene sheet. , 2003, Physical review letters.

[16]  J. Zuo,et al.  Atomic Resolution Imaging of a Carbon Nanotube from Diffraction Intensities , 2003, Science.

[17]  R. Telling,et al.  Wigner defects bridge the graphite gap , 2003, Nature materials.

[18]  S. Iijima,et al.  How accurate can the determination of chiral indices of carbon nanotubes be? , 2003 .

[19]  C. Bertozzi,et al.  Constructing azide-labeled cell surfaces using polysaccharide biosynthetic pathways. , 2003, Methods in enzymology.

[20]  C. Bertozzi,et al.  Investigating cellular metabolism of synthetic azidosugars with the Staudinger ligation. , 2002, Journal of the American Chemical Society.

[21]  W. Reutter,et al.  Biochemical Engineering of Cell Surface Sialic Acids Stimulates Axonal Growth , 2002, The Journal of Neuroscience.

[22]  S. Iijima,et al.  Linking chiral indices and transport properties of double-walled carbon nanotubes. , 2002, Physical review letters.

[23]  T. Paavonen,et al.  Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. , 2002, The American journal of pathology.

[24]  Kai Nordlund,et al.  Production of defects in supported carbon nanotubes under ion irradiation , 2002 .

[25]  D. Koshland,et al.  Differential Effects of Unnatural Sialic Acids on the Polysialylation of the Neural Cell Adhesion Molecule and Neuronal Behavior* , 2002, The Journal of Biological Chemistry.

[26]  Carolyn R Bertozzi,et al.  Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Heggie,et al.  Adatoms and nanoengineering of carbon , 2001, cond-mat/0112230.

[28]  David E. Luzzi,et al.  Electron irradiation effects in single wall carbon nanotubes , 2001 .

[29]  Mika Sirvio,et al.  Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes , 2001 .

[30]  M. Pawlita,et al.  Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. , 2001, Glycobiology.

[31]  Charles M. Lieber,et al.  Atomically resolved single-walled carbon nanotube intramolecular junctions. , 2001, Science.

[32]  Magnus Paulsson,et al.  Effect of bending and vacancies on the conductance of carbon nanotubes , 2000 .

[33]  M. Wierdl,et al.  Activation of CPT-11 in mice: identification and analysis of a highly effective plasma esterase. , 2000, Cancer research.

[34]  S. Stafström,et al.  MODELING VACANCIES IN GRAPHITE VIA THE HUCKEL METHOD , 2000 .

[35]  M. Nardelli,et al.  Theoretical STM signatures and transport properties of native defects in carbon nanotubes , 2000 .

[36]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[37]  Boris I. Yakobson,et al.  Atomistic theory of mechanical relaxation in fullerene nanotubes , 2000 .

[38]  R. Khokha,et al.  Insulin-like Growth Factor II Signaling in Neoplastic Proliferation Is Blocked by Transgenic Expression of the Metalloproteinase Inhibitor Timp-1 , 1999, The Journal of cell biology.

[39]  M. Yudasaka,et al.  Nano-aggregates of single-walled graphitic carbon nano-horns , 1999 .

[40]  F. Banhart,et al.  Irradiation effects in carbon nanostructures , 1999 .

[41]  S. Jurisson,et al.  Potential technetium small molecule radiopharmaceuticals. , 1999, Chemical reviews.

[42]  E G Kovaleva,et al.  Mechanism-based competitive inhibitors of glyoxalase I: intracellular delivery, in vitro antitumor activities, and stabilities in human serum and mouse serum. , 1999, Journal of medicinal chemistry.

[43]  C. Shaw III Gold-based therapeutic agents. , 1999, Chemical reviews.

[44]  Jean-Christophe Charlier,et al.  Surface reconstructions and dimensional changes in single-walled carbon nanotubes , 1998 .

[45]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[46]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[47]  K. Kelly,et al.  Determination of a and b site defects on graphite using C 60-adsorbed STM tips , 1998 .

[48]  W. Reutter,et al.  A Bifunctional Enzyme Catalyzes the First Two Steps in N-Acetylneuraminic Acid Biosynthesis of Rat Liver , 1997, The Journal of Biological Chemistry.

[49]  C. Bertozzi,et al.  Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. , 1997, Science.

[50]  J. Keinonen,et al.  Formation of Ion Irradiation-Induced Small-Scale Defects on Graphite Surfaces. , 1996, Physical review letters.

[51]  M. Fukuda Possible roles of tumor-associated carbohydrate antigens. , 1996, Cancer research.

[52]  Kang,et al.  Observation of charge enhancement induced by graphite atomic vacancy: A comparative STM and AFM study. , 1996, Physical review. B, Condensed matter.

[53]  M. Pawlita,et al.  Biosynthetic Modulation of Sialic Acid-dependent Virus-Receptor Interactions of Two Primate Polyoma Viruses (*) , 1995, The Journal of Biological Chemistry.

[54]  W. Reutter,et al.  Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. , 1992, The Journal of biological chemistry.

[55]  S. Sell,et al.  Cancer-associated carbohydrates identified by monoclonal antibodies. , 1990, Human pathology.

[56]  G. Hart,et al.  Intracellular trafficking of cell surface sialoglycoconjugates. , 1988, The Journal of biological chemistry.

[57]  D. Wales,et al.  Theoretical studies of icosahedral C60 and some related species , 1986 .

[58]  G. Klein,et al.  Variations in the sialic acid compositions in glycoproteins of mouse ascites tumor cell surfaces. , 1979, Biochemistry.

[59]  K. Abromeit Music Received , 2023, Notes.