Testing Extreme Learning Machine in Motor Imagery Brain Computer Interface

[1]  Dennis J. McFarland,et al.  Should the parameters of a BCI translation algorithm be continually adapted? , 2011, Journal of Neuroscience Methods.

[2]  Estanislao Arana,et al.  Applied mathematics and nonlinear sciences in the war on cancer , 2016 .

[3]  Zexuan Zhu,et al.  A fast pruned-extreme learning machine for classification problem , 2008, Neurocomputing.

[4]  Feng Jian,et al.  Complex Network Theory and Its Application Research on P2P Networks , 2016 .

[5]  B. Hjorth EEG analysis based on time domain properties. , 1970, Electroencephalography and clinical neurophysiology.

[6]  Alois Schlogl,et al.  Comparison of adaptive features with linear discriminant classifier for Brain computer Interfaces , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[7]  Pedro J. García-Laencina,et al.  Efficient feature selection and linear discrimination of EEG signals , 2013, Neurocomputing.

[8]  Brendan Z. Allison,et al.  Brain-Computer Interfaces , 2010 .

[9]  Alois Schlögl,et al.  The Electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications , 2000 .

[10]  Ad Aertsen,et al.  Review of the BCI Competition IV , 2012, Front. Neurosci..

[11]  Jonathan R Wolpaw,et al.  Brain–computer interfaces as new brain output pathways , 2007, The Journal of physiology.

[12]  P. Garc,et al.  Analysis of EEG Signals using Nonlinear Dynamics and Chaos: A review , 2015 .

[13]  Clemens Brunner,et al.  Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks , 2006, NeuroImage.

[14]  Juan Belmonte-Beitia,et al.  Nonlinear waves in a simple model of high-grade glioma , 2016 .

[15]  Wei-Yen Hsu,et al.  Fuzzy Hopfield neural network clustering for single-trial motor imagery EEG classification , 2012, Expert Syst. Appl..

[16]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[17]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[18]  Christa Neuper,et al.  Autocalibration and Recurrent Adaptation: Towards a Plug and Play Online ERD-BCI , 2012, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[19]  Clodoaldo Ap. M. Lima,et al.  Tackling EEG signal classification with least squares support vector machines: A sensitivity analysis study , 2010, Comput. Biol. Medicine.

[20]  German Rodriguez Bermudez,et al.  Performance analysis of different feature-classifier binomials in motor-imagering BCIs: Preliminary results , 2010, 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010).

[21]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[22]  Aleksandar Neskovic,et al.  Artificial Neural Network Based Approach to EEG Signal Simulation , 2012, Int. J. Neural Syst..

[23]  Pedro J. García-Laencina,et al.  Automatic and Adaptive Classification of Electroencephalographic Signals for Brain Computer Interfaces , 2012, Journal of Medical Systems.

[24]  Timo Similä,et al.  Multiresponse Sparse Regression with Application to Multidimensional Scaling , 2005, ICANN.

[25]  Guang-Bin Huang,et al.  Convex incremental extreme learning machine , 2007, Neurocomputing.

[26]  Li Bing,et al.  LAV Path Planning by Enhanced Fireworks Algorithm on Prior Knowledge , 2016 .

[27]  Amaury Lendasse,et al.  A Methodology for Building Regression Models using Extreme Learning Machine: OP-ELM , 2008, ESANN.

[28]  Brian R. Tietz,et al.  Deciding Which Way to Go: How Do Insects Alter Movements to Negotiate Barriers? , 2012, Front. Neurosci..

[29]  Amaury Lendasse,et al.  A faster model selection criterion for OP-ELM and OP-KNN: Hannan-Quinn criterion , 2009, ESANN.

[30]  Ángel Giménez,et al.  Applications of the min-max symbols of multimodal maps , 2016 .

[31]  Wei-Yen Hsu,et al.  EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier , 2011, Comput. Biol. Medicine.

[32]  Dejan J. Sobajic,et al.  Learning and generalization characteristics of the random vector Functional-link net , 1994, Neurocomputing.

[33]  Amaury Lendasse,et al.  OP-ELM: Optimally Pruned Extreme Learning Machine , 2010, IEEE Transactions on Neural Networks.

[34]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[35]  Pedro J. García-Laencina,et al.  Efficient Automatic Selection and Combination of EEG Features in Least Squares Classifiers for Motor Imagery Brain-Computer Interfaces , 2013, Int. J. Neural Syst..

[36]  Dianhui Wang,et al.  Extreme learning machines: a survey , 2011, Int. J. Mach. Learn. Cybern..

[37]  Amaury Lendasse,et al.  OP-ELM: Theory, Experiments and a Toolbox , 2008, ICANN.

[38]  Pedro J. García-Laencina,et al.  Exploring dimensionality reduction of EEG features in motor imagery task classification , 2014, Expert Syst. Appl..

[39]  Jaime Gómez Gil,et al.  Brain Computer Interfaces, a Review , 2012, Sensors.

[40]  Rabab K Ward,et al.  A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals , 2007, Journal of neural engineering.