Integrating a Smooth Psychovisual Threshold into an Adaptive JPEG Image Compression

The visual quality image output of JPEG compression is determined by quantization process. The popular quality factor in the extended JPEG image compression has been widely used to scale up the quantization tables. The scaling quantization table using quality factor is used to determine the quality image output. The scaling up on the quantization tables increases their values uniformly thus produces higher compression performance. However, the effects of the scaling up on the human visual system have not been taken into consideration. This paper examines the quantization table design based on adaptive psychovisual threshold and numerical analysis of the compression performance in terms of quality image reconstruction and average bit length of Huffman code. The comparison between extended JPEG image compression using the typical quality factor and quality scale of psychovisual threshold has been done. The experimental results of adaptive quantization tables based on psychovisual threshold show an improvement on the quality of image reconstruction at the lower average bit length of Huffman's code.

[1]  Nur Azman Abu,et al.  An efficient 2×2 Tchebichef moments for mobile image compression , 2011, 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS).

[2]  Jesse D. Kornblum Using JPEG quantization tables to identify imagery processed by software , 2008, Digit. Investig..

[3]  Herbert Lohscheller,et al.  A Subjectively Adapted Image Communication System , 1984, IEEE Trans. Commun..

[4]  V. Groza,et al.  Hardware support of JPEG , 2005, Canadian Conference on Electrical and Computer Engineering, 2005..

[5]  Nur Azman Abu,et al.  TMT quantization table generation based on psychovisual threshold for image compression , 2013, 2013 International Conference of Information and Communication Technology (ICoICT).

[6]  Ramakrishnan Mukundan,et al.  A Comparison of Discrete Orthogonal Basis Functions for Image Compression , 2004 .

[7]  Changhoon Yim,et al.  Quality Assessment of Deblocked Images , 2011, IEEE Transactions on Image Processing.

[8]  S. Kawahito,et al.  A parallel image compression system for high-speed cameras , 2005, IEEE International Workshop on Imaging Systems and Techniques, 2005.

[9]  Jiwu Huang,et al.  JPEG Error Analysis and Its Applications to Digital Image Forensics , 2010, IEEE Transactions on Information Forensics and Security.

[10]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[11]  Xiaolin Wu,et al.  A psychovisually tuned image codec , 2011, 2011 IEEE 13th International Workshop on Multimedia Signal Processing.

[12]  Nur Azman Abu,et al.  An Optimal Tchebichef Moment Quantization using Psychovisual Threshold for Image Compression , 2014 .

[13]  King Ngi Ngan,et al.  Adaptive cosine transform coding of images in perceptual domain , 1989, IEEE Trans. Acoust. Speech Signal Process..

[14]  Min Lei,et al.  Recoverable Video Watermark in DCT Domain , 2013, J. Comput..

[15]  Ricardo L. de Queiroz,et al.  Identification of bitmap compression history: JPEG detection and quantizer estimation , 2003, IEEE Trans. Image Process..

[16]  K. Venkataraman,et al.  Digital Camera Imaging System Simulation , 2009, IEEE Transactions on Electron Devices.

[17]  N. A. Abu,et al.  A generic psychovisual error threshold for the quantization table generation on JPEG image compression , 2013, 2013 IEEE 9th International Colloquium on Signal Processing and its Applications.

[18]  D. Mclaren,et al.  Removal of subjective redundancy from DCT-coded images , 1991 .

[19]  Nur Azman Abu,et al.  Tchebichef moment transform on image dithering for mobile applications , 2012, Digital Image Processing.

[20]  Alan C. Bovik,et al.  The Essential Guide to Image Processing , 2009, J. Electronic Imaging.

[21]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[22]  Nur Azman Abu,et al.  An Adaptive JPEG Image Compression Using Psychovisual Model , 2014 .

[23]  Nur Azman Abu,et al.  Adaptive Tchebichef moment transform Image Compression using Psychovisual Model , 2013, J. Comput. Sci..

[24]  S. Shahrin,et al.  Image Watermarking Using Psychovisual Threshold over the Edge , 2013, ICT-EurAsia.

[25]  Lijun Tian,et al.  A High Capacity Information Hiding Algorithm Based on Invariance Properties of JPEG Compression , 2010, J. Comput..

[26]  Nur Azman Abu,et al.  Psychovisual Model on Discrete Orthonormal Transform , 2013 .

[27]  Vijay Kumar Sharma,et al.  An study of removal of subjective redundancy in JPEG for low cost, low power, computation efficient circuit design and high compression image , 2010, 2010 International Conference on Power, Control and Embedded Systems.

[28]  Cheng Wang,et al.  A Robust Scalable Spatial Spread-Spectrum Video Watermarking Scheme Based on a Fast Downsampling Method , 2012, J. Comput..

[29]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[30]  Weisi Lin,et al.  Image Quality Assessment Based on Gradient Similarity , 2012, IEEE Transactions on Image Processing.

[31]  Djemel Ziou,et al.  Image Quality Metrics: PSNR vs. SSIM , 2010, 2010 20th International Conference on Pattern Recognition.

[32]  En-Hui Yang,et al.  Joint Optimization of Run-Length Coding, Huffman Coding, and Quantization Table With Complete Baseline JPEG Decoder Compatibility , 2009, IEEE Transactions on Image Processing.

[33]  Weisi Lin,et al.  A Psychovisual Quality Metric in Free-Energy Principle , 2012, IEEE Transactions on Image Processing.