Effect of Pressure Drop and Reheating on Thermal and Exergetic Performance of Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Central Receiver

[1]  Bruce D. Craig,et al.  Handbook of Corrosion Data , 1995 .

[2]  Robert Fuller,et al.  Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle , 2012 .

[3]  Brian D. Iverson,et al.  Review of high-temperature central receiver designs for concentrating solar power , 2014 .

[4]  James J. Sienicki,et al.  Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor , 2008 .

[5]  Seong Gu Kim,et al.  CFD investigation of a centrifugal compressor derived from pump technology for supercritical carbon dioxide as a working fluid , 2014 .

[6]  John J. Dyreby,et al.  Modeling Off-Design and Part-Load Performance of Supercritical Carbon Dioxide Power Cycles , 2013 .

[7]  Eric M. Clementoni,et al.  Supercritical Carbon Dioxide Brayton Power Cycle Development Overview , 2012 .

[8]  Motoaki Utamura,et al.  Thermodynamic Analysis of Part-Flow Cycle Supercritical CO2 Gas Turbines , 2010 .

[9]  Caian Qiu,et al.  Thermodynamic analysis and , 1993, Metallurgical and Materials Transactions A.

[10]  C. Turchi,et al.  A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications , 2013 .

[11]  Vaclav Dostal,et al.  High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors , 2006 .

[12]  Robert I. Jetter,et al.  Life Estimation of Pressurized-Air Solar-Thermal Receiver Tubes , 2012 .

[13]  Thomas M. Conboy,et al.  Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop , 2013 .

[14]  M. McKellar,et al.  Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications , 2011 .

[15]  Brian D. Iverson,et al.  High-efficiency thermodynamic power cycles for concentrated solar power systems , 2014 .

[16]  A. Moisseytsev,et al.  Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. , 2009 .

[17]  Michael A. Gerber,et al.  EnergyPlus Energy Simulation Software , 2014 .

[18]  Enrico Rinaldi,et al.  Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2 , 2012 .

[19]  M. J. Moran,et al.  Fundamentals of Engineering Thermodynamics , 2014 .

[20]  Gary E Rochau,et al.  Steady State Supercritical Carbon Dioxide Recompression Closed Brayton Cycle Operating Point Comparison With Predictions , 2014 .

[21]  Bruce Hannon,et al.  Dynamic Modeling , 1994, Springer US.

[22]  Eric M. Clementoni,et al.  Startup and Operation of a Supercritical Carbon Dioxide Brayton Cycle , 2014 .

[23]  Daniel Favrat,et al.  Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources , 2012 .

[24]  Ata D. Akbari,et al.  Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle , 2014 .

[25]  Jeong Ik Lee,et al.  Design Methodology of Supercritical CO2 Brayton Cycle Turbomachineries , 2012 .

[26]  J. E. Parrott,et al.  Theoretical upper limit to the conversion efficiency of solar energy , 1978 .

[27]  Pradip Dutta,et al.  DESIGN OF AN EXPERIMENTAL TEST FACILITY FOR SUPERCRITICAL CO2 BRAYTON CYCLE , 2014 .

[28]  K. Wark,et al.  Advanced thermodynamics for engineers , 1994 .

[29]  Jahar Sarkar,et al.  Second law analysis of supercritical CO2 recompression Brayton cycle , 2009 .

[30]  Chris Manzie,et al.  Extremum-seeking control of a supercritical carbon-dioxide closed Brayton cycle in a direct-heated solar thermal power plant , 2013 .

[31]  Vaclav Dostal,et al.  A supercritical carbon dioxide cycle for next generation nuclear reactors , 2004 .

[32]  W. Stein,et al.  Thermogravimetric Study of Oxidation-Resistant Alloys for High-Temperature Solar Receivers , 2013 .

[33]  Pradip Dutta,et al.  Development of a Ceramic Pressurized Volumetric Solar Receiver for Supercritical CO2 Brayton Cycle , 2014 .

[34]  Vaclav Dostal,et al.  A Supercritical CO{sub 2} Cycle- a Promising Power Conversion System for Generation IV Reactors , 2006 .

[35]  C. Turchi,et al.  Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems , 2013 .

[36]  Jeong-Ik Lee,et al.  Preliminary studies of compact Brayton cycle performance for Small Modular High Temperature Gas-cooled Reactor system , 2015 .

[37]  Mark Lutz,et al.  Programming Python , 1996 .

[38]  R. Viswanathan,et al.  Materials for ultra-supercritical coal-fired power plant boilers , 2006 .

[39]  M. Driscoll,et al.  The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles , 2006 .

[40]  Clifford K. Ho,et al.  High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles , 2014 .

[41]  John Pye,et al.  An exergy analysis of tubular solar-thermal receivers with different working fluids , 2015 .

[42]  R. Petela Exergy of undiluted thermal radiation , 2003 .

[43]  Pardeep Garg,et al.  Supercritical carbon dioxide Brayton cycle for concentrated solar power , 2013 .

[44]  Ibrahim Dincer,et al.  Importance of exergy for analysis, improvement, design, and assessment , 2013 .

[45]  M. J. Driscoll,et al.  ASSESSMENT OF GAS COOLED FAST REACTOR WITH INDIRECT SUPERCRITICAL CO 2 CYCLE , 2006 .

[46]  Peter A. Jacobs,et al.  Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant , 2013 .

[47]  E. Feher SUPERCRITICAL THERMODYNAMIC POWER CYCLE. , 1967 .

[48]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .