Newtonized Orthogonal Matching Pursuit for Line Spectrum Estimation with Multiple Measurement Vectors

A Newtonized orthogonal matching pursuit (NOMP) algorithm is proposed to estimate continuous frequencies and amplitudes of a mixture of sinusoids with multiple measurement vectors (MMVs). The proposed algorithm includes two key steps: Detecting a new sinusoid on an oversampled discrete Fourier transform (DFT) grid and refining the parameters of already detected sinusoids to avoid the problem of basis mismatch. We provide a stopping criterion based on the overestimating probability of the model order. In addition, the convergence of the proposed algorithm is also proved. Finally, numerical results are conducted to investigate the effectiveness of the proposed algorithm when compared against the state-of-the-art algorithms in terms of frequency estimation accuracy and run time.

[1]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[2]  A. Barron,et al.  Approximation and learning by greedy algorithms , 2008, 0803.1718.

[3]  Upamanyu Madhow,et al.  Compressive Channel Estimation and Tracking for Large Arrays in mm-Wave Picocells , 2015, IEEE Journal of Selected Topics in Signal Processing.

[4]  Mashud Hyder,et al.  Direction-of-Arrival Estimation Using a Mixed � , 2010 .

[5]  Lihua Xie,et al.  On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.

[6]  J. G. Gander,et al.  An introduction to signal detection and estimation , 1990 .

[7]  A. Schaeffer Inequalities of A. Markoff and S. Bernstein for polynomials and related functions , 1941 .

[8]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[9]  Heinz Teutsch,et al.  Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition , 2007 .

[10]  Yuejie Chi,et al.  Analysis of fisher information and the Cramer-Rao bound for nonlinear parameter estimation after compressed sensing , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[12]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[13]  Lihua Xie,et al.  Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.

[14]  Jian Li,et al.  SPICE: A Sparse Covariance-Based Estimation Method for Array Processing , 2011, IEEE Transactions on Signal Processing.

[15]  Benjamin Recht,et al.  Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.

[16]  Petre Stoica,et al.  SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation , 2012, Signal Process..

[17]  Nikos D. Sidiropoulos,et al.  Enhanced PUMA for Direction-of-Arrival Estimation and Its Performance Analysis , 2016, IEEE Transactions on Signal Processing.

[18]  Upamanyu Madhow,et al.  Noncoherent compressive channel estimation for mm-wave massive MIMO , 2018, 2018 52nd Asilomar Conference on Signals, Systems, and Computers.

[19]  Edwin K. P. Chong,et al.  Sensitivity considerations in compressed sensing , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[20]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[21]  Jian Li,et al.  Sparse Methods for Direction-of-Arrival Estimation , 2016, ArXiv.

[22]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[23]  Shidong Zhou,et al.  On the Monotonicity, Log-Concavity, and Tight Bounds of the Generalized Marcum and Nuttall $Q$-Functions , 2010, IEEE Transactions on Information Theory.

[24]  Are Hjrungnes,et al.  Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications , 2011 .

[25]  Shi Jin,et al.  Efficient Downlink Channel Reconstruction for FDD Multi-Antenna Systems , 2018, IEEE Transactions on Wireless Communications.

[26]  Rick S. Blum,et al.  On the Analysis of the Fisher Information of a Perturbed Linear Model After Random Compression , 2018, IEEE Signal Processing Letters.

[27]  Yuejie Chi,et al.  Off-the-Grid Line Spectrum Denoising and Estimation With Multiple Measurement Vectors , 2014, IEEE Transactions on Signal Processing.

[28]  Yonina C. Eldar,et al.  On the Sample Complexity of Multichannel Frequency Estimation via Convex Optimization , 2017, IEEE Transactions on Information Theory.

[29]  Yonina C. Eldar,et al.  Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation , 2009, IEEE Transactions on Information Theory.

[30]  Michael P. Friedlander,et al.  Sparse Optimization with Least-Squares Constraints , 2011, SIAM J. Optim..

[31]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[32]  Upamanyu Madhow,et al.  Noncoherent mmWave Path Tracking , 2017, HotMobile.

[33]  Upamanyu Madhow,et al.  Newtonized Orthogonal Matching Pursuit: Frequency Estimation Over the Continuum , 2015, IEEE Transactions on Signal Processing.

[34]  Jun Fang,et al.  Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach , 2016, IEEE Transactions on Signal Processing.

[35]  Yuejie Chi,et al.  Quantized Spectral Compressed Sensing: Cramer–Rao Bounds and Recovery Algorithms , 2017, IEEE Transactions on Signal Processing.

[36]  John G. Proakis,et al.  Digital Communications , 1983 .

[37]  Jian Li,et al.  New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data , 2011, IEEE Transactions on Signal Processing.

[38]  H. Rauhut,et al.  Atoms of All Channels, Unite! Average Case Analysis of Multi-Channel Sparse Recovery Using Greedy Algorithms , 2008 .

[39]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[40]  Cishen Zhang,et al.  A Discretization-Free Sparse and Parametric Approach for Linear Array Signal Processing , 2013, IEEE Transactions on Signal Processing.

[41]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2010, IEEE Transactions on Signal Processing.