Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries

[1]  Gengfeng Zheng,et al.  MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor , 2013, Scientific Reports.

[2]  Y. Bando,et al.  Co3O4 nanocages with highly exposed {110} facets for high-performance lithium storage , 2013, Scientific Reports.

[3]  S. Or,et al.  Co3O4/C nanocapsules with onion-like carbon shells as anode material for lithium ion batteries , 2013 .

[4]  Z. Tang,et al.  Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. , 2013, Angewandte Chemie.

[5]  Wei Luo,et al.  Reconstruction of Conformal Nanoscale MnO on Graphene as a High‐Capacity and Long‐Life Anode Material for Lithium Ion Batteries , 2013 .

[6]  Wei Luo,et al.  Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. , 2013, ACS applied materials & interfaces.

[7]  I. Paterson,et al.  Total synthesis of (-)-rhizopodin. , 2012, Angewandte Chemie.

[8]  J. Tu,et al.  MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance , 2012 .

[9]  Yi Shi,et al.  MnO nanoparticles anchored on graphene nanosheets via in situ carbothermal reduction as high-performance anode materials for lithium-ion batteries , 2012 .

[10]  Yunhui Huang,et al.  Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries , 2012 .

[11]  K. Ryu,et al.  NiO nanoparticles with plate structure grown on graphene as fast charge–discharge anode material for lithium ion batteries , 2012 .

[12]  Yunhui Huang,et al.  Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties , 2012 .

[13]  Yunhui Huang,et al.  Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries , 2012 .

[14]  Guohua Chen,et al.  Porous Mn2O3 microsphere as a superior anode material for lithium ion batteries , 2012 .

[15]  J. Tu,et al.  NiO–graphene hybrid as an anode material for lithium ion batteries , 2012 .

[16]  D. He,et al.  Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes , 2012 .

[17]  Yunhui Huang,et al.  Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries , 2012 .

[18]  J. Xie,et al.  Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties , 2012 .

[19]  Yunhui Huang,et al.  Surface modification of electrospun TiO2 nanofibers via layer-by-layer self-assembly for high-performance lithium-ion batteries , 2012 .

[20]  A. Du,et al.  Rapid microwave-assisted synthesis of Mn3O4–graphene nanocomposite and its lithium storage properties , 2012 .

[21]  Kejun Zhang,et al.  Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. , 2012, ACS applied materials & interfaces.

[22]  Yunhui Huang,et al.  Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries , 2012 .

[23]  Zaiping Guo,et al.  Rapid microwave-assisted synthesis of Mn 3 O 4-graphene nanocomposite and its lithium storage properties , 2012 .

[24]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[25]  Yunhui Huang,et al.  Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. , 2011, Physical chemistry chemical physics : PCCP.

[26]  Wei Luo,et al.  Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. , 2011, ACS nano.

[27]  Lixia Yuan,et al.  Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries , 2011 .

[28]  Michael A. Lowe,et al.  Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries , 2011 .

[29]  X. Lou,et al.  Graphene-supported anatase TiO2 nanosheets for fast lithium storage. , 2011, Chemical communications.

[30]  Dong‐Wan Kim,et al.  Long-term, high-rate lithium storage capabilities of TiO2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays , 2011 .

[31]  Yong Wang,et al.  Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries , 2011 .

[32]  Yongcai Qiu,et al.  Morphology-conserved transformation: synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties , 2011 .

[33]  Bing Sun,et al.  MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries , 2011 .

[34]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[35]  Qinmin Pan,et al.  MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries , 2010 .

[36]  Li Lu,et al.  Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries , 2010 .

[37]  Peng Li,et al.  Mn3O4 Nanocrystals: Facile Synthesis, Controlled Assembly, and Application , 2010 .

[38]  Yong‐Sheng Hu,et al.  Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. , 2009, Nano letters.

[39]  S. Ramakrishna,et al.  Electrospun nanofibers in energy and environmental applications , 2008 .

[40]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[41]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[42]  Mao-Sung Wu,et al.  Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. , 2005, The journal of physical chemistry. B.

[43]  Younan Xia,et al.  Electrospinning of nanofibers with core-sheath, hollow, or porous structures , 2005 .

[44]  Xiaogang Peng,et al.  Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach , 2004 .

[45]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[46]  J. Tarascon,et al.  Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO toward Lithium , 2004 .

[47]  Palani Balaya,et al.  Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity , 2003 .

[48]  A. Rogach,et al.  Organization of Matter on Different Size Scales: Monodisperse Nanocrystals and Their Superstructures , 2002 .

[49]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[50]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .