Eigenvalue Order Statistics for Random Schrödinger Operators with Doubly-Exponential Tails

AbstractWe consider random Schrödinger operators of the form $${\Delta+\xi}$$Δ+ξ, where $${\Delta}$$Δ is the lattice Laplacian on $${\mathbb{Z}^{d}}$$Zd and $${\xi}$$ξ is an i.i.d. random field, and study the extreme order statistics of the Dirichlet eigenvalues for this operator restricted to large but finite subsets of $${\mathbb{Z}^{d}}$$Zd. We show that, for $${\xi}$$ξ with a doubly-exponential type of upper tail, the upper extreme order statistics of the eigenvalues falls into the Gumbel max-order class, and the corresponding eigenfunctions are exponentially localized in regions where $${\xi}$$ξ takes large, and properly arranged, values. The picture we prove is thus closely connected with the phenomenon of Anderson localization at the spectral edge. Notwithstanding, our approach is largely independent of existing methods for proofs of Anderson localization and it is based on studying individual eigenvalue/eigenfunction pairs and characterizing the regions where the leading eigenfunctions put most of their mass.

[1]  S. A. Molčanov,et al.  The local structure of the spectrum of the one-dimensional Schrödinger operator , 1981 .

[2]  Dirk Hundertmark,et al.  A short introduction to Anderson localization , 2007 .

[3]  W. Konig,et al.  Geometric characterization of intermittency in the parabolic Anderson model , 2005, math/0507585.

[4]  W. Marsden I and J , 2012 .

[5]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[6]  M. Aizenman,et al.  Communications in Mathematical Physics Finite-Volume Fractional-Moment Criteria for Anderson Localization , 2001 .

[7]  F. Wegner Bounds on the density of states in disordered systems , 1981 .

[8]  N. Sidorova,et al.  Localisation and ageing in the parabolic Anderson model with Weibull potential , 2012, 1204.1233.

[9]  Peter Mörters The parabolic Anderson model with heavy-tailed potential , 2009 .

[10]  A. Astrauskas,et al.  Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. I. Asymptotic Expansion Formulas , 2008 .

[11]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[12]  Peter Stollmann,et al.  Caught by Disorder: Bound States in Random Media , 2001 .

[13]  M. Biskup,et al.  Mass concentration and aging in the parabolic Anderson model with doubly-exponential tails , 2016, 1609.00989.

[14]  L. de Haan,et al.  Limit Distributions for Order Statistics. II , 1978 .

[15]  Reinhard Lang,et al.  Spectral Theory of Random Schrödinger Operators , 1991 .

[16]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[17]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[18]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[19]  Fr'ed'eric Klopp,et al.  Enhanced Wegner and Minami Estimates and Eigenvalue Statistics of Random Anderson Models at Spectral Edges , 2011, Annales Henri Poincaré.

[20]  Fr'ed'eric Klopp,et al.  Spectral statistics for random Schr\"odinger operators in the localized regime , 2010, 1011.1832.

[21]  A. Astrauskas,et al.  Poisson-Type Limit Theorems for Eigenvalues of Finite-Volume Anderson Hamiltonians , 2007 .

[22]  J. Gärtner,et al.  Parabolic problems for the Anderson model , 1990 .

[23]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[24]  B. Simon,et al.  Singular continuous spectrum under rank one perturbations and localization for random hamiltonians , 1986 .

[25]  Hartmut Schwetlick,et al.  Analysis and Stochastics of Growth Processes and Interface Models , 2008 .

[26]  Long-time tails in the parabolic Anderson model , 2000, math-ph/0004014.

[27]  Peter Stollmann,et al.  Caught by disorder , 2001 .

[28]  S. Muirhead,et al.  Complete localisation and exponential shape of the parabolic Anderson model with Weibull potential field , 2013, 1311.7634.

[29]  S. Molčanov,et al.  On the basic states of one-dimensional disordered structures , 1983 .

[30]  Weak and almost sure limits for the parabolic Anderson model with heavy tailed potentials , 2006, math/0606527.

[31]  J. Gärtner,et al.  Correlation structure of intermittency in the parabolic Anderson model , 1999 .

[32]  W. Koenig,et al.  The Parabolic Anderson Model , 2004, math/0403091.

[33]  A. Astrauskas,et al.  Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. III. Localization Properties , 2013 .

[34]  W. König,et al.  The Universality Classes in the Parabolic Anderson Model , 2005, math/0504102.

[35]  R. Killip,et al.  Eigenfunction Statistics in the Localized Anderson Model , 2007 .

[36]  J. Gärtner,et al.  Parabolic problems for the Anderson model , 1998 .

[37]  Screening Effect Due to Heavy Lower Tails in One-Dimensional Parabolic Anderson Model , 2000, math-ph/0007013.