Shaped optimal control pulses for increased excitation bandwidth in EPR.

A 1 ns resolution pulse shaping unit has been developed for pulsed EPR spectroscopy to enable 14-bit amplitude and phase modulation. Shaped broadband excitation pulses designed using optimal control theory (OCT) have been tested with this device at X-band frequency (9 GHz). FT-EPR experiments on organic radicals in solution have been performed with the new pulses, designed for uniform excitation over a significantly increased bandwidth compared to a classical rectangular π/2 pulse of the same B(1) amplitude. The concept of a dead-time compensated prefocused pulse has been introduced to EPR with a self-refocusing of 200 ns after the end of the pulse. Echo-like refocused signals have been recorded and compared to the performance of a classical Hahn-echo sequence. The impulse response function of the microwave setup has been measured and incorporated into the algorithm for designing OCT pulses, resulting in further significant improvements in performance. Experimental limitations and potential new applications of OCT pulses in EPR spectroscopy will be discussed.

[1]  Thomas J Pohida,et al.  Stochastic excitation and Hadamard correlation spectroscopy with bandwidth extension in RF FT-EPR. , 2003, Journal of magnetic resonance.

[2]  Navin Khaneja,et al.  Optimal control in NMR spectroscopy: numerical implementation in SIMPSON. , 2009, Journal of magnetic resonance.

[3]  G. Wegner,et al.  Radikalkationensalze einfacher Arene – eine neue Familie „organischer Metalle”† , 1980 .

[4]  Linear phase slope in pulse design: application to coherence transfer. , 2008, Journal of magnetic resonance.

[5]  W. Mims,et al.  Use of a microwave delay line to reduce the dead time in electron spin echo envelope spectroscopy , 1981 .

[6]  J. Cook,et al.  Tailored sinc pulses for uniform excitation and artifact-free radio frequency time-domain EPR imaging. , 2004, Journal of magnetic resonance.

[7]  M Negoro,et al.  Total compensation of pulse transients inside a resonator. , 2010, Journal of magnetic resonance.

[8]  Exploring the limits of polarization transfer efficiency in homonuclear three spin systems. , 2006, Journal of magnetic resonance.

[9]  Burkhard Luy,et al.  Optimal control design of excitation pulses that accommodate relaxation. , 2007, Journal of magnetic resonance.

[10]  R. R. Ernst,et al.  Application of Fourier Transform Spectroscopy to Magnetic Resonance , 1966 .

[11]  Michael Mehring,et al.  Hyperfine sublevel correlation (hyscore) spectroscopy: a 2D ESR investigation of the squaric acid radical , 1986 .

[12]  John Vanderkooy,et al.  Transfer-Function Measurement with Maximum-Length Sequences , 1989 .

[13]  Ray Freeman,et al.  Use of neural networks to design shaped radiofrequency pulses , 1990 .

[14]  R Kaiser,et al.  Coherent spectrometry with noise signals , 1970 .

[15]  Duncan A Robertson,et al.  A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time. , 2009, The Review of scientific instruments.

[16]  T. Prisner,et al.  Fourier-transform EPR at high-field/high-frequency (3.4 T/95 GHz) using broadband stochastic microwave excitation. , 2001, Journal of magnetic resonance.

[17]  L. O’Dell,et al.  Optimized excitation pulses for the acquisition of static NMR powder patterns from half-integer quadrupolar nuclei. , 2010, Journal of magnetic resonance.

[18]  S. Hartmann,et al.  Theory of spectral diffusion decay using an uncorrelated-sudden-jump model , 1974 .

[19]  J. Freed,et al.  Two-dimensional Fourier transform ESR spectroscopy , 1986 .

[20]  G. Jeschke,et al.  Dead-time free measurement of dipole-dipole interactions between electron spins. , 2000, Journal of magnetic resonance.

[21]  S. Glaser,et al.  Cooperative pulses. , 2010, Journal of magnetic resonance.

[22]  G. Rinard,et al.  250 MHz crossed‐loop resonator for pulsed electron paramagnetic resonance , 2002 .

[23]  R. R. Ernst,et al.  Electron-spin-echo envelope modulation with improved modulation depth , 1991 .

[24]  A. Schweiger,et al.  Fourier transform EPR-detected NMR , 1991 .

[25]  S. Glaser,et al.  Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation. , 2011, The Journal of chemical physics.

[26]  Ray Freeman,et al.  Adiabatic pulses for wideband inversion and broadband decoupling , 1995 .

[27]  Burkhard Luy,et al.  Boundary of quantum evolution under decoherence , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  G. Bodenhausen,et al.  Frequency-modulated “Chirp” pulses for broadband inversion recovery in magnetic resonance , 1990 .

[29]  J. Freed,et al.  A theoretical approach to the analysis of arbitrary pulses in magnetic resonance , 1996 .

[30]  Philip W. Anderson,et al.  Spectral Diffusion Decay in Spin Resonance Experiments , 1962 .

[31]  J. Freed,et al.  Two‐dimensional Fourier transform ESR correlation spectroscopy , 1988 .

[32]  R. R. Ernst Nuclear Magnetic Double Resonance with an Incoherent Radio‐Frequency Field , 1966 .

[33]  J. M. Gambetta,et al.  Optimal control methods for rapidly time-varying Hamiltonians , 2011, 1102.0584.

[34]  M. Rohrer,et al.  Pulsed 95 GHz high-field EPR heterodyne spectrometer with high spectral and time resolution , 1994 .

[35]  B. Blümich,et al.  Nonlinear noise analysis in nuclear magnetic resonance spectroscopy. 1D, 2D, and 3D spectra , 1983 .

[36]  J. Freed,et al.  DOUBLE QUANTUM TWO-DIMENSIONAL FOURIER TRANSFORM ELECTRON SPIN RESONANCE :DISTANCE MEASUREMENTS , 1996 .

[37]  D. Sugny,et al.  Simultaneous time-optimal control of the inversion of two spin-(1/2) particles , 2010, 1009.1077.

[38]  R. Griffin,et al.  Pulsed ESR at 140 GHz , 1992 .

[39]  L. Frydman,et al.  Quadrupolar nuclear magnetic resonance spectroscopy in solids using frequency-swept echoing pulses. , 2007, The Journal of chemical physics.

[40]  Felix Motzoi,et al.  Coarse-grained optimal control methods for fast time-varying Hamiltonians , 2011 .

[41]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[42]  J. Freed,et al.  Multiple-quantum ESR and distance measurements , 1999 .

[43]  Arthur Schweiger,et al.  Pulsed ELDOR detected NMR , 1994 .

[44]  J. Freed,et al.  Composite pulses in time-domain ESR , 1989 .

[45]  J. Freed,et al.  Spectral rotation in pulsed ESR spectroscopy , 1986 .

[46]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[47]  M. Schwoerer,et al.  Electron spin relaxation of new organic conductors: fluroranthenyl radical cation salts , 1982 .

[48]  Burkhard Luy,et al.  Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude. , 2004, Journal of magnetic resonance.

[49]  Burkhard Luy,et al.  Tailoring the optimal control cost function to a desired output: application to minimizing phase errors in short broadband excitation pulses. , 2005, Journal of magnetic resonance.

[50]  Gunnar Jeschke,et al.  Principles of pulse electron paramagnetic resonance , 2001 .

[51]  Pines,et al.  Broadband and adiabatic inversion of a two-level system by phase-modulated pulses. , 1985, Physical review. A, General physics.

[52]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[53]  Thomas E Skinner,et al.  Optimal control design of pulse shapes as analytic functions. , 2010, Journal of magnetic resonance.

[54]  K. Dinse,et al.  ESR with stochastic excitation , 1989 .

[55]  Navin Khaneja,et al.  Optimal Control Methods in NMR Spectroscopy , 2010 .

[56]  L. O’Dell,et al.  QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra , 2008 .

[57]  Y Zhang,et al.  Singular extremals for the time-optimal control of dissipative spin 1/2 particles. , 2010, Physical review letters.

[58]  N. Khaneja,et al.  Construction of universal rotations from point-to-point transformations. , 2005, Journal of magnetic resonance.

[59]  U. Brandt,et al.  Relaxation filtered hyperfine (REFINE) spectroscopy: a novel tool for studying overlapping biological electron paramagnetic resonance signals applied to mitochondrial complex I. , 2004, Biochemistry.

[60]  Klaus Woelk,et al.  Design and application of robust rf pulses for toroid cavity NMR spectroscopy. , 2010, Journal of magnetic resonance.

[61]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[62]  Richard R. Ernst,et al.  Magnetic resonance with stochastic excitation , 1970 .