Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation

Abstract In this work, we analyze the new generalized Emden–Fowler equation with neutral type delays: r ( t ) | Z ′ ( t ) | α - 1 Z ′ ( t ) ′ + q ( t ) | x ( σ ( t ) ) | β - 1 x ( σ ( t ) ) = 0 , where Z ( t ) = x ( t ) + p ( t ) x ( τ ( t ) ) , α ⩾ β > 0 . By use of averaging technique and specific analytical skills, some easily-accessible oscillation and asymptotic criteria are established, which have extended the results in the cited literature.

[1]  Lihua Liu,et al.  New oscillation criteria for second-order nonlinear neutral delay differential equations , 2009, J. Comput. Appl. Math..

[2]  Xiaoyan Lin,et al.  Oscillation of second-order nonlinear neutral differential equations☆ , 2005 .

[3]  Yuan Gong Sun,et al.  Note on the paper of Džurina and Stavroulakis , 2006, Appl. Math. Comput..

[4]  Shigui Ruan,et al.  Oscillations of Second Order Neutral Differential Equations , 1993, Canadian Mathematical Bulletin.

[5]  Yūki Naito,et al.  Oscillation and nonoscillation criteria for second order quasilinear differential equations , 1997 .

[6]  Zhiting Xu,et al.  Oscillation criteria for second order quasilinear neutral delay differential equations , 2009, Appl. Math. Comput..

[7]  Fanwei Meng,et al.  Some new oscillation criteria for second order quasi-linear neutral delay differential equations , 2006, Appl. Math. Comput..

[8]  Tuncay Candan,et al.  Oscillation behavior of arbitrary order neutral differential equations , 2004, Appl. Math. Lett..

[9]  J. Džurina,et al.  Oscillation of second order neutral delay differential equations , 2009 .

[10]  Jozef Dzurina,et al.  Oscillation criteria for second-order delay differential equations , 2003, Appl. Math. Comput..

[11]  Xiaojing Yang Oscillation criterion for a class of quasilinear differential equations , 2004, Appl. Math. Comput..

[12]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[13]  Fanwei Meng,et al.  Oscillation criteria for second order quasi-linear neutral delay differential equations , 2007, Appl. Math. Comput..

[14]  Cheh-Chih Yeh,et al.  Oscillation criteria for second-order neutral delay difference equations , 1998 .

[15]  F. Berezovskaya Properties of the emden-fowler equation under stochastic disturbances that depend on parameters , 1994 .

[16]  Xiaoping Li,et al.  Oscillation of second order nonlinear neutral differential equations , 2003, Appl. Math. Comput..

[17]  N. Yoshida,et al.  Nonoscillation Theorems for a Class of Quasilinear Differential Equations of Second-Order , 1995 .

[18]  J. Wong,et al.  On the Generalized Emden–Fowler Equation , 1975 .

[19]  Wan-Tong Li,et al.  Interval oscillation of second-order half-linear functional differential equations , 2004, Appl. Math. Comput..

[20]  Qi-Gui Yang,et al.  Interval criteria for oscillation of second-order half-linear differential equations☆ , 2004 .

[21]  Wan-Tong Li,et al.  Interval oscillation criteria for second order neutral nonlinear differential equations , 2004, Appl. Math. Comput..