Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

[1]  Karsten König,et al.  Indium-tin-oxide single-nanowire gas sensor fabricated via laser writing and subsequent etching , 2015 .

[2]  M. Eickhoff,et al.  Detection of oxidising gases using an optochemical sensor system based on GaN/InGaN nanowires , 2014 .

[3]  M. Stutzmann,et al.  Detection of random vapour concentrations using an integrating diamond gas sensor , 2014 .

[4]  Ralf Moos,et al.  Overview on conductometric solid-state gas dosimeters , 2014 .

[5]  Philip J. Martin,et al.  Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. , 2013, Small.

[6]  S. Mathur,et al.  Synthesis, Characterization, and Humidity Detection Properties of Nb2O5 Nanorods and SnO2/Nb2O5 Heterostructures , 2013 .

[7]  M. Stutzmann,et al.  Water adsorbate mediated accumulation gas sensing at hydrogenated diamond surfaces , 2013 .

[8]  P. Offermans,et al.  Enhanced detection of NO2 with recessed AlGaN/GaN open gate structures , 2013 .

[9]  Peter Offermans,et al.  ${\rm NO}_{2}$ Detection With AlGaN/GaN 2DEG Channels for Air Quality Monitoring , 2013, IEEE Sensors Journal.

[10]  Martin Eickhoff,et al.  Opto-chemical sensor system for the detection of H2 and hydrocarbons based on InGaN/GaN nanowires , 2012 .

[11]  J. Seminario,et al.  Ab Initio Analysis of the Interactions of GaN Clusters with Oxygen and Water , 2012 .

[12]  Ralf Moos,et al.  Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations , 2012, Sensors.

[13]  B. Rezek,et al.  Temperature enhanced gas sensing properties of diamond films , 2012 .

[14]  J. Kuo,et al.  Structural and Dynamic Properties of Water on the GaN Polar Surface , 2011 .

[15]  M. Vaněček,et al.  Gas sensing properties of nanocrystalline diamond films , 2010 .

[16]  Gerhard Müller,et al.  On the Low-Temperature Response of Semiconductor Gas Sensors , 2009, J. Sensors.

[17]  Martin Eickhoff,et al.  Gas sensing properties of hydrogen-terminated diamond , 2008 .

[18]  Alfred B. Anderson,et al.  Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple , 2007, Science.

[19]  G. Sberveglieri,et al.  Dissociative Gas Sensing at Metal Oxide Surfaces , 2007, IEEE Sensors Journal.

[20]  G. Sberveglieri,et al.  Gas Sensing Properties of Hydrogenated Amorphous Silicon Films , 2007, IEEE Sensors Journal.

[21]  Tiexiang Fu,et al.  Sensing properties and mechanism of gas sensor for H2S and NO2 based on [Cu5(bipyO2)6Cl8]Cl2 , 2007 .

[22]  Yang Li,et al.  Fast response thin film SnO2 gas sensors operating at room temperature , 2006 .

[23]  S. Christoulakis,et al.  Low temperature indium oxide gas sensors , 2006 .

[24]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[25]  Shan Gao,et al.  Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating , 2006 .

[26]  Kevin P. Galvin,et al.  A conceptually simple derivation of the Kelvin equation (short communication) , 2005 .

[27]  Jenshan Lin,et al.  TOPICAL REVIEW: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing , 2004 .

[28]  Hong-Ming Lin,et al.  A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature , 2004 .

[29]  C. Ghanshyam,et al.  Detection mechanism of Metal Oxide Gas Sensor under UV Radiation. , 2004 .

[30]  I. Eisele,et al.  Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements , 2003 .

[31]  Martin Eickhoff,et al.  Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes , 2003 .

[32]  Lester F. Eastman,et al.  pH response of GaN surfaces and its application for pH-sensitive field-effect transistors , 2003 .

[33]  Martin Eickhoff,et al.  Gas sensitive GaN/AlGaN-heterostructures , 2002 .

[34]  Martin Eickhoff,et al.  GaN-based heterostructures for sensor applications , 2002 .

[35]  Martin Eickhoff,et al.  Wetting Behaviour of GaN Surfaces with Ga‐ or N‐Face Polarity , 2001 .

[36]  Elisabetta Comini,et al.  UV light activation of tin oxide thin films for NO2 sensing at low temperatures , 2001 .

[37]  Oliver Ambacher,et al.  Group-III-Nitride Based Gas Sensing Devices , 2001 .

[38]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[39]  Giorgio Sberveglieri,et al.  Light enhanced gas sensing properties of indium oxide and tin dioxide sensors , 2000 .

[40]  J. Long,et al.  Chemisorption of H2O on GaN(0001) , 2000 .

[41]  Hiroshi Kawarada,et al.  Enhancement/Depletion Surface Channel Field Effect Transistors of Diamond and Their Logic Circuits , 1997 .

[42]  Koji Kajimura,et al.  Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements , 1996 .

[43]  Giorgio Sberveglieri,et al.  The kinetics of formation of gas-sensitive RGTO-SnO2 films , 1995 .

[44]  Yoshiyuki Sakaguchi,et al.  Hydrogenating Effect of Single-Crystal Diamond Surface , 1992 .

[45]  Giorgio Sberveglieri,et al.  RGTO: a new technique for preparing SnO/sub 2/ sputtered thin film as gas sensors , 1991, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers.

[46]  K. V. Ravi,et al.  Hydrogen passivation of electrically active defects in diamond , 1989 .

[47]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[48]  Sir William Thomson F.R.S. LX. On the equilibrium of vapour at a curved surface of liquid , 1871 .

[49]  M. Eickhoff,et al.  Group III-Nitride Chemical Nanosensors with Optical Readout , 2014 .

[50]  Hong-Ming Lin,et al.  UV enhancement of the gas sensing properties of nano-TiO2 , 2003 .

[51]  H. Lüth Solid Surfaces, Interfaces and Thin Films , 2001 .

[52]  M. Henzler,et al.  Oberflächenphysik des Festkörpers , 1991 .

[53]  Rudolf Brdička,et al.  Grundlagen der physikalischen Chemie , 1952 .

[54]  William Thomson,et al.  4. On the Equilibrium of Vapour at a Curved Surface of Liquid. , 1872 .