Angstrom-scale distance dependence of antenna-enhanced vibrational signals.

The resonantly enhanced near-field of micrometer-sized gold antennas has been probed with Angstrom-scale resolution. In situ surface-enhanced infrared spectroscopic vibrational signals of carbon monoxide (CO) layers cold-condensed on the antennas in ultrahigh-vacuum conditions are compared to the signals of CO layers with corresponding thicknesses on a flat gold surface. Vibrational signals of CO as well as the shift of the plasmonic resonance frequency were used to analyze the distance dependence of the near-field. The signal enhancement induced by the antennas not only decays monotonically from the surface but, in contrast to classical near-field models, shows a maximum between 10 and 15 Å and decays also toward the surface of the antenna. This effect is attributed to the spill-out of the electron wave function, as expected from quantum mechanical calculations.

[1]  Joseph Maria Kumar Irudayaraj,et al.  Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens , 2010 .

[2]  R. Aroca,et al.  Surface-enhanced infrared spectroscopy of monolayers , 1995 .

[3]  George C. Schatz,et al.  Nanoscale Optical Biosensor : Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles , 2022 .

[4]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[5]  Andreas Otto,et al.  The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering , 2005 .

[6]  Naomi J Halas,et al.  Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. , 2009, ACS nano.

[7]  R. Hillenbrand,et al.  Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. , 2007, Optics express.

[8]  Keith T. Carron,et al.  Determination of the Distance Dependence and Experimental Effects for Modified SERS Substrates Based on Self-Assembled Monolayers Formed Using Alkanethiols , 1999 .

[9]  R. Muller,et al.  Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. , 2010, Nano letters.

[10]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[11]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[12]  Emil Prodan,et al.  Quantum plasmonics: optical properties and tunability of metallic nanorods. , 2010, ACS nano.

[13]  M. Collings,et al.  The profile of the 2140 cm(-1) solid CO band on different substrates. , 2006, Physical chemistry chemical physics : PCCP.

[14]  T. Nagao,et al.  Plasmons in nanoscale and atomic-scale systems , 2010, Science and technology of advanced materials.

[15]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[16]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[17]  P. Richards,et al.  Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy: I. Silver , 1986 .

[18]  T. Vo‐Dinh,et al.  Surface-enhanced Raman gene probe for HIV detection. , 1998, Analytical chemistry.

[19]  Harald Giessen,et al.  Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates. , 2012, ACS nano.

[20]  P. Vikesland,et al.  Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. , 2010, Environmental science & technology.

[21]  T. Taubner,et al.  Quasi-analytical model for scattering infrared near-field microscopy on layered systems. , 2012, Optics express.

[22]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[23]  Andreas Henkel,et al.  Single unlabeled protein detection on individual plasmonic nanoparticles. , 2012, Nano letters.

[24]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[25]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[26]  S. Maier,et al.  Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. , 2011, Nano letters.

[27]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[28]  T. Schumacher,et al.  Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle , 2011, Nature Communications.

[29]  Bo N. J. Persson,et al.  Vibrational interaction between molecules adsorbed on a metal surface: The dipole-dipole interaction , 1981 .

[30]  K. Tsuei,et al.  The impact of the concept of a surface plasmon , 1995 .

[31]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[32]  R. Bachelot,et al.  Quantitative analysis of localized surface plasmons based on molecular probing. , 2010, ACS nano.

[33]  Y. Gogotsi,et al.  In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. , 2009, ACS nano.

[34]  J. Janni,et al.  Surface-enhanced raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines. , 2000, Analytical chemistry.

[35]  F. Golmar,et al.  Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots , 2012, Nature Communications.

[36]  Annemarie Pucci,et al.  Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. , 2008, Physical review letters.

[37]  J. Pendry,et al.  Transformation-optics description of nonlocal effects in plasmonic nanostructures. , 2012, Physical review letters.

[38]  M. Allegrini,et al.  Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires. , 2011, ACS nano.

[39]  P. Feibelman Surface electromagnetic fields , 1982 .

[40]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[41]  T. Nagao,et al.  Antenna Sensing of Surface Phonon Polaritons , 2010 .

[42]  Annemarie Pucci,et al.  Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes. , 2011, Optics express.

[43]  J. Aizpurua,et al.  Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. , 2010, Nano letters.

[44]  I. Vegard Struktur und Leuchtfähigkeit von festem Kohlenoxyd , 1930 .

[45]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.