Acoustic intensity simulations for regulatory compliance

Ensuring that an ultrasound imager complies with all aspects of the FDA 510(k) regulations is a complex task, because there are hundreds of thousands of discrete operating conditions available to the sonographer. Accurate measurements require `peaking' of the hydrophone in azimuth and elevation, and acquiring data as a function of range. Thus it is necessary to characterize the acoustic field in 3 dimensions. It is simply impossible to measure the imager's output under each condition, so algorithmic means are needed to reduce the dimensionality of the problem. Even when simple linear dependencies (such as pulse repetition frequency) are taken into account, the time to obtain Thermal and Mechanical Indices for a new probe is formidable. We must also repeat the experiment each time changes are made to the transmitter hardware, or its waveforms. In this paper, we explore how to speed the acquisition of data used for estimation of the output labeling parameters by guiding the water-tank measurements with a beam simulator.