Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption

Abstract Over the past 20 years, gas absorption membrane (GAM) contactors have been evaluated as an alternative to packed columns in carbon dioxide (CO 2 ) capture applications. The success of this technology is highly dependent on the wetting relationship between the membrane and liquid solvent used in the system. This paper tests the performance of microporous polypropylene (PP) and polytetrafluoroethylene (PTFE) hollow fiber membranes in a GAM system using aqueous solutions of monoethanolamine (MEA) and 2-amino-2-methyl-1-propanol (AMP). Experimental results showed that PP membranes suffer a loss in performance over time when used with aqueous alkanolamine solutions, while PTFE membranes maintain their initial level of performance. A new GAM module design allowed for the connection of modules in series, intermediate data sampling points, and removable membrane cartridges. Overall, GAM systems were shown to be an effective technology for absorbing CO 2 from simulated flue gas streams, but the solvent–membrane relationship is a critical factor that can significantly affect system performance.

[1]  J. D. Rogers,et al.  Modeling hollow fiber membrane contactors using film theory, Voronoi tessellations, and facilitation factors for systems with interface reactions , 1997 .

[2]  Removal of mercury from gas streams by oxidative membrane gas absorption , 2001 .

[3]  Jing-liang Li,et al.  Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors , 2005 .

[4]  A. K. Biswas,et al.  Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions , 2001 .

[5]  Hiroyo Matsumoto,et al.  CO2 removal by hollow-fiber gas-liquid contactor , 1995 .

[6]  H. Takeuchi,et al.  Removal of CO2 and/or SO2 from gas streams by a membrane absorption method , 1994 .

[7]  H. Takeuchi,et al.  Removal of CO2 by Gas Absorption across a Polymeric Membrane , 1992 .

[8]  Ming-Chien Yang,et al.  Designing hollow‐fiber contactors , 1986 .

[9]  D. T. Liang,et al.  Impact of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors , 2004 .

[10]  B Eiseman,et al.  Experimental evaluation of Gore-Tex membrane oxygenator. , 1975, The Journal of thoracic and cardiovascular surgery.

[11]  N. Nishikawa,et al.  Fundamental Study on CO2 Removal from the Flue Gas of Thermal Power Plant by Hollow-fiber Gas-Liquid Contactor , 1994 .

[12]  Edward L Cussler,et al.  Microporous hollow fibers for gas absorption. I. Mass transfer in the liquid , 1985 .

[13]  Kang Li,et al.  Modeling of Microporous Hollow Fiber Membrane Modules Operated under Partially Wetted Conditions , 1997 .

[14]  Karen L. Wang,et al.  Baffled membrane modules made with hollow fiber fabric , 1993 .

[15]  Kang Li,et al.  Use of permeation and absorption methods for CO2 removal in hollow fibre membrane modules , 1998 .

[16]  A. E. Jansen,et al.  CO2 separation with polyolefin membrane contactors and dedicated absorption liquids: performances and prospects , 2002 .

[17]  D. Cooney,et al.  GAS ABSORPTION IN A HOLLOW FIBER DEVICE , 1989 .

[18]  O. Falk-Pedersen,et al.  Separation of carbon dioxide from offshore gas turbine exhaust , 1995 .

[19]  Geert Versteeg,et al.  Determination of mass transfer rates in wetted and non-wetted microporous membranes , 1993 .

[20]  Edward L Cussler,et al.  Mass transfer in various hollow fiber geometries , 1992 .

[21]  Paitoon Tontiwachwuthikul,et al.  Behavior of the Mass-Transfer Coefficient of Structured Packings in CO2 Absorbers with Chemical Reactions , 1999 .

[22]  Edward L Cussler,et al.  Microporous hollow fibers for gas absorption : II. Mass transfer across the membrane , 1985 .

[23]  A. Veawab,et al.  Characterization and Comparison of the CO2 Absorption Performance into Single and Blended Alkanolamines in a Packed Column , 2004 .

[24]  Paitoon Tontiwachwuthikul,et al.  Comparing the Absorption Performance of Packed Columns and Membrane Contactors , 2005 .

[25]  K. Tanishita,et al.  Development and clinical evaluation of hollow fiber membrane oxygenator. , 1981, Transactions - American Society for Artificial Internal Organs.

[26]  R. Chambers,et al.  Surface Defluorination of PTFE by Sodium Atoms , 1994 .

[27]  P. Tontiwachwuthikul,et al.  Parametric studies of carbon dioxide absorption into highly concentrated monoethanolamine solutions , 2001 .

[28]  Kamalesh K. Sirkar,et al.  Gas absorption studies in microporous hollow fiber membrane modules , 1993 .

[29]  G. Versteeg,et al.  Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors , 2004 .

[30]  S. R. Wickramasinghe,et al.  Hollow fiber modules made with hollow fiber fabric , 1993 .

[31]  Jan Paul Pradier,et al.  Carbon dioxide chemistry : environmental issues , 1994 .

[32]  Geert Versteeg,et al.  Modelling of cross-flow membrane contactors: physical mass transfer processes , 2005 .

[33]  S. R. Wickramasinghe,et al.  Better hollow fiber contactors , 1991 .

[34]  Geert Versteeg,et al.  New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors , 2002 .

[35]  N. N. Dutta,et al.  Absorption of carbon monoxide in hollow fiber membranes , 1994 .

[36]  H. A. Rangwala Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors , 1996 .

[37]  Kang Li,et al.  Use of asymmetric hollow fibre modules for elimination of H2S from gas streams via a membrane absorption method , 1998 .

[38]  R. Idem,et al.  Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions , 2003 .