Two-terminal artificial synapse with hybrid organic–inorganic perovskite (CH3NH3)PbI3 and low operating power energy (∼47 fJ/μm2)

[1]  S. Maikap,et al.  Resistive switching memory and artificial synapse by using Ti/MoS2 based conductive bridging cross-points , 2020 .

[2]  Ruixin Dong,et al.  A new type artificial synapse based on the organic copolymer memcapacitor , 2020 .

[3]  Li Zhu,et al.  IGZO-based floating-gate synaptic transistors for neuromorphic computing , 2020, Journal of Physics D: Applied Physics.

[4]  Ru Huang,et al.  A comprehensive review on emerging artificial neuromorphic devices , 2020, Applied Physics Reviews.

[5]  Jang‐Sik Lee,et al.  Synergistic Improvement of Long‐Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia‐Based Oxide‐Semiconductor Transistors , 2020, Advanced materials.

[6]  Kang Li,et al.  Fabricating flexible wafer-size inorganic semiconductor devices , 2020 .

[7]  Jaehoon Han,et al.  Photo-Responsible Synapse Using Ge Synaptic Transistors and GaAs Photodetectors , 2020, IEEE Electron Device Letters.

[8]  G. Burr,et al.  Emerging materials in neuromorphic computing: Guest editorial , 2020 .

[9]  Jack D. Kendall,et al.  The building blocks of a brain-inspired computer , 2020 .

[10]  Young Sun,et al.  Nonvolatile memory and artificial synapse based on the Cu/P(VDF-TrFE)/Ni organic memtranstor. , 2020, ACS applied materials & interfaces.

[11]  Daniele Ielmini,et al.  Memristive and CMOS Devices for Neuromorphic Computing , 2020, Materials.

[12]  Ammar Belatreche,et al.  A review of learning in biologically plausible spiking neural networks , 2019, Neural Networks.

[13]  Gary A. Sevison,et al.  Phase change dynamics and 2-dimensional 4-bit memory in Ge2Sb2Te5 via telecom-band encoding , 2019, 1911.03536.

[14]  Krishn Gopal Rajput,et al.  Controlled Ionic Tunneling in Lithium Nanoionic Synaptic Transistor through Atomically Thin Graphene Layer for Neuromorphic Computing , 2019, Advanced Electronic Materials.

[15]  Yakov Roizin,et al.  Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing , 2019, Nature Electronics.

[16]  S. Ambrogio,et al.  Emerging neuromorphic devices , 2019, Nanotechnology.

[17]  Jiangyu Li,et al.  Highly Robust Flexible Ferroelectric Field Effect Transistors Operable at High Temperature with Low‐Power Consumption , 2019, Advanced Functional Materials.

[18]  Kaushik Roy,et al.  Towards spike-based machine intelligence with neuromorphic computing , 2019, Nature.

[19]  Sen Song,et al.  Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges , 2019, Advanced materials.

[20]  Dane W. deQuilettes,et al.  Charge-Carrier Recombination in Halide Perovskites. , 2019, Chemical reviews.

[21]  Tae Whan Kim,et al.  Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing , 2019, NPG Asia Materials.

[22]  Yeongjun Lee,et al.  Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing , 2019, Advanced Electronic Materials.

[23]  Nam-Gyu Park,et al.  Perovskite-related (CH3NH3)3Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing. , 2019, Nanoscale.

[24]  Su‐Ting Han,et al.  A bio-inspired electronic synapse using solution processable organic small molecule , 2019 .

[25]  J. Eom,et al.  Thickness-dependent resistive switching in black phosphorus CBRAM , 2019, Journal of Materials Chemistry C.

[26]  Rohit Abraham John,et al.  Ionotronic Halide Perovskite Drift‐Diffusive Synapses for Low‐Power Neuromorphic Computation , 2018, Advanced materials.

[27]  Jang‐Sik Lee,et al.  Flexible Artificial Synaptic Devices Based on Collagen from Fish Protein with Spike‐Timing‐Dependent Plasticity , 2018, Advanced Functional Materials.

[28]  Y. Qi,et al.  Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability , 2018 .

[29]  A. Sokolov,et al.  Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors , 2018 .

[30]  George G. Malliaras,et al.  Neuromorphic device architectures with global connectivity through electrolyte gating , 2017, Nature Communications.

[31]  M. Marinella,et al.  A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. , 2017, Nature materials.

[32]  Pooi See Lee,et al.  Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory. , 2017, ACS nano.

[33]  Miaoqiang Lyu,et al.  Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure , 2016 .

[34]  M. Ko,et al.  Pyrite‐Based Bi‐Functional Layer for Long‐Term Stability and High‐Performance of Organo‐Lead Halide Perovskite Solar Cells , 2016 .

[35]  Ru Huang,et al.  Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. , 2016, Nanoscale.

[36]  Zhengguo Xiao,et al.  Energy‐Efficient Hybrid Perovskite Memristors and Synaptic Devices , 2016 .

[37]  Wentao Xu,et al.  Organometal Halide Perovskite Artificial Synapses , 2016, Advanced materials.

[38]  H. Hwang,et al.  Improved Synaptic Behavior Under Identical Pulses Using AlOx/HfO2 Bilayer RRAM Array for Neuromorphic Systems , 2016, IEEE Electron Device Letters.

[39]  Hyunsang Hwang,et al.  Organic core-sheath nanowire artificial synapses with femtojoule energy consumption , 2016, Science Advances.

[40]  Wei Xu,et al.  Solution‐Grown Monocrystalline Hybrid Perovskite Films for Hole‐Transporter‐Free Solar Cells , 2016, Advanced materials.

[41]  Wuhong Xue,et al.  Synaptic plasticity and learning behaviours in flexible artificial synapse based on polymer/viologen system , 2016 .

[42]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[43]  Run‐Wei Li,et al.  Organic Biomimicking Memristor for Information Storage and Processing Applications , 2016 .

[44]  G. Malliaras,et al.  Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors , 2015, Advanced materials.

[45]  Ee Wah Lim,et al.  Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey , 2015 .

[46]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[47]  Wei Lu,et al.  Biorealistic Implementation of Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics , 2015 .

[48]  Peter R. Slater,et al.  A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl) , 2015 .

[49]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[50]  Dominique Vuillaume,et al.  Filamentary switching: synaptic plasticity through device volatility. , 2015, ACS nano.

[51]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[52]  Tuo-Hung Hou,et al.  3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation , 2014, 2014 IEEE International Electron Devices Meeting.

[53]  Bipin Rajendran,et al.  Novel synaptic memory device for neuromorphic computing , 2014, Scientific Reports.

[54]  X. Miao,et al.  Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems , 2014, Scientific Reports.

[55]  Qing Wan,et al.  Short-Term Memory to Long-Term Memory Transition Mimicked in IZO Homojunction Synaptic Transistors , 2013, IEEE Electron Device Letters.

[56]  Yoon-Jae Baek,et al.  Digital versus analog resistive switching depending on the thickness of nickel oxide nanoparticle assembly , 2013 .

[57]  Li Qiang Zhu,et al.  Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors. , 2013, Nanoscale.

[58]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[59]  Lih-Juann Chen,et al.  Dynamic evolution of conducting nanofilament in resistive switching memories. , 2013, Nano letters.

[60]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[61]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[62]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[63]  T. Hasegawa,et al.  AgI/Ag Heterojunction Nanowires: Facile Electrochemical Synthesis, Photoluminescence, and Enhanced Ionic Conductivity , 2007 .

[64]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[65]  S. Adams,et al.  Defect chemistry and transport characteristics of β-AgI , 2000 .

[66]  H. Robinson,et al.  Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. , 1999, Biophysical journal.

[67]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[68]  Sen Song,et al.  Temporally Asymmetric Hebbian Learning, Spike liming and Neural Response Variability , 1998, NIPS.

[69]  W. Regehr,et al.  Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse , 1996, The Journal of Neuroscience.

[70]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[71]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[72]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[73]  O. Knop,et al.  Alkylammonium lead halides. Part 1. Isolated PbI64− ions in (CH3NH3)4PbI6•2H2O , 1987 .

[74]  H. Moers,et al.  Untersuchungen zur Wechselwirkung von gasförmigem molekularem Iod mit Silberoberflächen mittels XPS und AES , 1987 .

[75]  V. M. Donnelly,et al.  Chemiluminescence and the reaction of molecular fluorine with silicon , 1981 .

[76]  J. Franco,et al.  Properties of in-situ formed solid electrolyte AgI in a Ag/β-AgI/2I2Py cell , 1981 .

[77]  P. Weightman,et al.  The influence of the 4d bandwidth on the M4,5N4,5N4,5 Auger spectra of Ag in MgAg and AlAg alloys , 1980 .