Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys

The magnetically induced martensitic variant reorientation process under applied mechanical load in magnetic shape memory alloys (MSMAs) is considered. Of particular interest is the associated nonlinear and hysteretic macroscopic strain response under variable applied magnetic field in the presence of stress, also known as the magnetic shape memory effect (MSME). A thermodynamically consistent phenomenological constitutive model is derived which captures the magnetic shape memory effect caused by the martensitic variant reorientation process, using internal state variables, which are chosen in consideration of the crystallographic and magnetic microstructure. The magnetic contributions to the free energy function considered in this work are the Zeeman energy and the magnetocrystalline anisotropy energy. Activation functions for the onset and termination of the reorientation process are formulated and evolution equations for the internal state variables are derived. The model is applied to a two-dimensional special case in which the application of a transverse magnetic field produces axial reorientation strain in a NiMnGa single-crystal specimen under a constant compressive axial stress. It is explicitly shown how the model parameters are obtained from experimental data. Model predictions of magnetic field-reorientation strain hysteresis loops under different applied stresses are discussed. †Dedicated to Professor Gerard Maugin on the occasion of his receiving of the 2003 SES A.C. Eringen Medal.

[1]  M. Taya,et al.  Effect of magnetic field on martensite transformation in a polycrystalline Ni2MnGa , 2003 .

[2]  Sanjay Govindjee,et al.  A computational model for shape memory alloys , 2000 .

[3]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[4]  Jian Li,et al.  A new ferromagnetic shape memory alloy system , 2001 .

[5]  Alexei Sozinov,et al.  Effect of crystal structure on magnetic-field-induced strain in Ni-Mn-Ga , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  A. C. Eringen,et al.  Electrodynamics of continua. Volume 1. Foundations and solid media. Volume 2 - Fluids and complex media , 1990 .

[7]  Robert C. O'Handley,et al.  Model for strain and magnetization in magnetic shape-memory alloys , 1998 .

[8]  M. Taya,et al.  Magnetic field-induced reversible variant rearrangement in Fe–Pd single crystals , 2004 .

[9]  Robert C. O'Handley,et al.  Magnetic and mechanical properties of FeNiCoTi and NiMnGa magnetic shape memory alloys , 1999, Smart Structures.

[10]  K. Hutter,et al.  Field matter interactions in thermoelastic solids , 1978 .

[11]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[12]  Alexei Sozinov,et al.  Magnetic-field-induced strains in polycrystalline Ni-Mn-Ga at room temperature , 2001 .

[13]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[14]  L. Hirsinger,et al.  Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga , 2003 .

[15]  N. Spaldin Magnetic Materials: Fundamentals and Device Applications , 2003 .

[16]  Gérard A. Maugin,et al.  Electrodynamics of Continua II: Fluids and Complex Media , 1989 .

[17]  Andrew G. Glen,et al.  APPL , 2001 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  H. Morito,et al.  Magnetocrystalline anisotropy in single-crystal Co-Ni-Al ferromagnetic shape-memory alloy , 2002 .

[20]  L. Tong,et al.  Modelling of magneto-mechanical behaviour of Ni–Mn–Ga single crytals , 2005 .

[21]  John T. Wen,et al.  Modeling of a flexible beam actuated by shape memory alloy wires , 1997 .

[22]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[23]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[24]  C. Kittel,et al.  Physical Theory of Ferromagnetic Domains , 1949 .

[25]  Antonio De Simone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[26]  V. Ferraro Electrodynamics of Moving Media , 1958, Nature.

[27]  Richard D. James,et al.  Martensitic transformations and shape-memory materials ☆ , 2000 .

[28]  K. Ishida,et al.  Magnetic properties and large magnetic-field-induced strains in off-stoichiometric Ni–Mn–Al Heusler alloys , 2000 .

[29]  A. A. Likhachev,et al.  Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy , 2000 .

[30]  Samuel M. Allen,et al.  Field-induced strain under load in Ni–Mn–Ga magnetic shape memory materials , 1998 .

[31]  A. A. Likhachev,et al.  Quantitative Model of Large Magnetostrain Effect in Ferromagnetic Shape Memory Alloys , 2000 .

[32]  A. A. Likhachev,et al.  Magnetic Field Controlled Twin Boundaries Motion and Giant Magnetomechanical Effects in Ni—Mn—Ga Shape Memory Alloy , 2000 .

[33]  Daan Lenstra,et al.  Proceedings in SPIE , 2000 .

[34]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[35]  Richard D. James,et al.  Magnetic and magnetomechanical properties of Ni2MnGa , 1999 .

[36]  S. J. Murray,et al.  Model for discontinuous actuation of ferromagnetic shape memory alloy under stress , 2001 .

[37]  Richard D. James,et al.  Magnetostriction of martensite , 1998 .

[38]  L. Brinson,et al.  Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach , 1997 .

[39]  Richard D. James,et al.  Phase transformation and magnetic anisotropy of an iron-palladium ferromagnetic shape-memory alloy , 2004 .

[40]  P. J. Webster,et al.  Magnetic order and phase transformation in Ni2MnGa , 1984 .

[41]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[42]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[43]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[44]  Antonio DeSimone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[45]  Minoru Taya,et al.  Model calculation of the stress-strain relationship of polycrystalline Fe-Pd and 3D phase transformation diagram of ferromagnetic shape memory alloys , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[46]  Hermann A. Haus,et al.  Electrodynamics of Moving Media , 1968 .

[47]  Richard D. James,et al.  Alternative smart materials , 1996, Smart Structures.

[48]  Dimitris C. Lagoudas,et al.  Phenomenological modeling of ferromagnetic shape memory alloys , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[49]  V. V. Kokorin,et al.  Ferromagnetic shape memory in the NiMnGa system , 1999 .

[50]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[51]  Christian Lexcellent,et al.  Modelling detwinning of martensite platelets under magnetic and (or) stress actions on Ni-Mn-Ga alloys , 2003 .

[52]  Samuel M. Allen,et al.  Large field induced strain in single crystalline Ni–Mn–Ga ferromagnetic shape memory alloy , 2000 .

[53]  A. A. Likhachev,et al.  Quantitative model of large magnetostrain effect in ferromagnetic shapell memory alloys , 1999, cond-mat/9906433.

[54]  Robert C. O'Handley,et al.  Modern magnetic materials , 2000 .

[55]  C. Lexcellent,et al.  A general macroscopic description of the thermomechanical behavior of shape memory alloys , 1996 .

[56]  Dimitris C. Lagoudas,et al.  Modeling of the magnetic field-induced martensitic variant reorientation and the associated magnetic shape memory effect in MSMAs , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[57]  M. Wuttig,et al.  Occurrence of ferromagnetic shape memory alloys (invited) , 2000 .

[58]  S. Timoshenko,et al.  Mechanics of Materials, 3rd Ed. , 1991 .

[59]  C. Kittel,et al.  Ferromagnetic Domain Theory , 1956 .

[60]  H. D. Chopra,et al.  Temperature- and field-dependent evolution of micromagnetic structure in ferromagnetic shape-memory alloys , 2004 .

[61]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[62]  Robert C. O'Handley,et al.  Magnetic-field-induced strain in single-crystal Ni-Mn-Ga , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[63]  Dimitris C. Lagoudas,et al.  On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material , 2000 .

[64]  Dimitris C. Lagoudas,et al.  Modeling porous shape memory alloys using micromechanical averaging techniques , 2002 .

[65]  Dimitris C. Lagoudas,et al.  Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy , 2003 .

[66]  T. Shield Magnetomechanical testing machine for ferromagnetic shape-memory alloys , 2003 .

[67]  Minoru Taya,et al.  Structural change and straining in Fe–Pd polycrystals by magnetic field , 2003 .

[68]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[69]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[70]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[71]  S. Allen,et al.  Analytical model for field-induced strain in ferromagnetic shape-memory alloy polycrystals , 2002 .

[72]  N. Glavatska,et al.  Statistical model of magnetostrain effect in martensite , 2003 .

[73]  Antonio DeSimone,et al.  A theory of magnetostriction oriented towards applications , 1997 .

[74]  V. A. Chernenko,et al.  A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity) , 2003 .

[75]  H. Tiersten Coupled Magnetomechanical Equations for Magnetically Saturated Insulators , 1964 .

[76]  T. Takagi,et al.  Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni–Mn–Fe–Ga alloy , 2001 .

[77]  L. C. Brinson,et al.  Simplifications and Comparisons of Shape Memory Alloy Constitutive Models , 1996 .

[78]  Etienne Patoor,et al.  Micromechanical Modelling of Superelasticity in Shape Memory Alloys , 1996 .

[79]  Antonio DeSimone,et al.  A constrained theory of magnetoelasticity , 2002 .

[80]  F. Auricchio,et al.  Generalized plasticity and shape-memory alloys , 1996 .

[81]  Takashi Fukuda,et al.  Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation , 2000 .

[82]  Y. Pao,et al.  Electrodynamics for moving elastic solids and viscous fluids , 1975, Proceedings of the IEEE.

[83]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[84]  V. Chernenko,et al.  Crystal structure of martensite in heusler alloy Ni2MnGa , 1990 .

[85]  Samuel M. Allen,et al.  6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga , 2000 .

[86]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .