The optimal absolute ratio for online bin packing

We present an online bin packing algorithm with absolute competitive ratio 5/3, which is optimal.

[1]  D. T. Lee,et al.  A simple on-line bin-packing algorithm , 1985, JACM.

[2]  D. T. Lee,et al.  On-Line Bin Packing in Linear Time , 1989, J. Algorithms.

[3]  Jirí Sgall,et al.  First Fit bin packing: A tight analysis , 2013, STACS.

[4]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[5]  Daniele Vigo,et al.  Bin packing approximation algorithms: Survey and classification , 2013 .

[6]  Rob van Stee,et al.  Beating the Harmonic lower bound for online bin packing , 2015, ICALP.

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  André van Vliet,et al.  An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..

[9]  Daniele Vigo,et al.  Bin Packing Approximation Algorithms: Combinatorial Analysis , 1999, Handbook of Combinatorial Optimization.

[10]  Steven S. Seiden,et al.  On the online bin packing problem , 2001, JACM.

[11]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..

[12]  Jirí Sgall,et al.  Optimal Analysis of Best Fit Bin Packing , 2014, ICALP.

[13]  D. Simchi-Levi New worst‐case results for the bin‐packing problem , 1994 .

[14]  Jeffrey D. Ullman,et al.  Worst-case analysis of memory allocation algorithms , 1972, STOC.

[15]  Jeffrey D. Ullman,et al.  The performance of a memory allocation algorithm , 1971 .

[16]  Andrew Chi-Chih Yao,et al.  New Algorithms for Bin Packing , 1978, JACM.

[17]  R. V. Stee,et al.  Beating the Harmonic Lower Bound for Online , 2016 .

[18]  József Békési,et al.  New lower bounds for certain classes of bin packing algorithms , 2012, Theor. Comput. Sci..