Equivalence of (quasi-)norms on a vector-valued function space and its applications to multilinear operators

In this paper we present (quasi-)norm equivalence on a vector-valued function space $L^p_A(l^q)$ and extend the equivalence to $p=\infty$ and $0<q<\infty$ in the scale of Triebel-Lizorkin space, motivated by Fraizer-Jawerth. By applying the results, we improve the multilinear Hormander's multiplier theorem of Tomita, that of Grafakos-Si, and the boundedness results for bilinear pseudo-differential operators, given by Koezuka-Tomita.

[1]  Bae Jun Park Some maximal inequalities on Triebel–Lizorkin spaces for p=∞ , 2017, Mathematische Nachrichten.

[2]  Á. Bényi,et al.  Symbolic Calculus and the Transposes of Bilinear Pseudodifferential Operators , 2003 .

[3]  Charles Fefferman,et al.  Some Maximal Inequalities , 1971 .

[4]  L. Carleson Two remarks on H1 and BMO , 1976 .

[5]  Nicholas Michalowski,et al.  Multilinear pseudodifferential operators beyond , 2011 .

[6]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[7]  L. Grafakos,et al.  The Hörmander multiplier theorem for multilinear operators , 2012 .

[8]  L. Grafakos,et al.  Multilinear Calderón–Zygmund Theory , 2002 .

[9]  Bilinear operators with homogeneous symbols, smooth molecules, and Kato-Ponce inequalities , 2017 .

[10]  Ronald R. Coifman,et al.  Au delà des opérateurs pseudo-différentiels , 1978 .

[11]  Weighted norm inequalities for multilinear Fourier multipliers , 2012 .

[12]  V. Naibo,et al.  Coifman–Meyer multipliers: Leibniz-type rules and applications to scattering of solutions to PDEs , 2019, Transactions of the American Mathematical Society.

[13]  W. Staubach,et al.  Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators , 2013, 1304.0656.

[14]  Loukas Grafakos,et al.  Modern Fourier Analysis , 2008 .

[15]  Christoph Thiele,et al.  On Calderon s conjecture , 1999 .

[16]  Ronald R. Coifman,et al.  On commutators of singular integrals and bilinear singular integrals , 1975 .

[17]  L(p) estimates for the bilinear Hilbert transform. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Sobolev space estimates and symbolic calculus for bilinear pseudodifferential operators , 2006 .

[19]  Naohito Tomita A Hörmander type multiplier theorem for multilinear operators , 2010 .

[20]  Ronald R. Coifman,et al.  Nonlinear harmonic analysis and analytic dependence , 1985 .

[21]  H. Triebel Theory Of Function Spaces , 1983 .

[22]  Camil Muscalu,et al.  Classical and Multilinear Harmonic Analysis: Preface , 2013 .

[23]  Akihiko Miyachi,et al.  Minimal smoothness conditions for bilinear Fourier multipliers , 2013 .

[24]  Bilinear Pseudo-differential Operators with Symbols in $$BS^{m}_{1,1}$$BS1,1m on Triebel–Lizorkin Spaces , 2018 .

[25]  David Goldberg A local version of real Hardy spaces , 1979 .

[26]  Jean Bourgain,et al.  On an endpoint Kato-Ponce inequality , 2014, Differential and Integral Equations.

[27]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[28]  Naohito Tomita,et al.  Weighted norm inequalities for multilinear Fourier multipliers with critical Besov regularity , 2017 .

[29]  Seungly Oh,et al.  The Kato-Ponce Inequality , 2013, 1303.5144.

[30]  L. Grafakos,et al.  On Multilinear Fourier Multipliers of Limited Smoothness , 2013, Canadian Journal of Mathematics.

[31]  Multilinear Fourier Multipliers with Minimal Sobolev Regularity, I , 2015, 1504.06915.

[32]  Y. Meyer,et al.  Wavelets: Calderón-Zygmund and Multilinear Operators , 1997 .

[33]  Akihiko Miyachi,et al.  Calderón-vaillancourt-type theorem for bilinear operators , 2013 .

[34]  Charles Fefferman,et al.  Characterizations of bounded mean oscillation , 1971 .

[35]  On the Bilinear Hörmander Classes in the Scales of Triebel-Lizorkin and Besov Spaces , 2015 .