A linguistic-based portfolio selection model using weighted max-min operator and hybrid genetic algorithm

Fuzzy mathematical programming is a main approach of multi-objective decision making, which prepares the decision makers to obtain the solution that satisfies his/her preference. In this paper, a fuzzy weighted max-min model for a mean-absolute deviation portfolio selection problem with real features is represented. To solve the resulted models, a hybrid genetic algorithm is proposed. An empirical study based on 75 assets of New York stock exchange (NYSE) is considered for in sample and out of sample analysis to illustrate the efficiency of the proposed model. The results show the high performance of fuzzy portfolios comparing with the performance of crisp portfolios and S&P 500 index.

[1]  Tae Yoon Kim,et al.  Using genetic algorithm to support portfolio optimization for index fund management , 2005, Expert Syst. Appl..

[2]  H. Markowitz The optimization of a quadratic function subject to linear constraints , 1956 .

[3]  BenayounR.,et al.  Linear programming with multiple objective functions , 1971 .

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  R. Mansini,et al.  A comparison of MAD and CVaR models with real features , 2008 .

[6]  Kin Keung Lai,et al.  Decision Aiding Portfolio rebalancing model with transaction costs based on fuzzy decision theory , 2005 .

[7]  Andrea Schaerf,et al.  Local Search Techniques for Constrained Portfolio Selection Problems , 2001, ArXiv.

[8]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[9]  Harry M. Markowitz,et al.  Computation of mean-semivariance efficient sets by the Critical Line Algorithm , 1993, Ann. Oper. Res..

[10]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[11]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[12]  Pankaj Gupta,et al.  Asset portfolio optimization using fuzzy mathematical programming , 2008, Inf. Sci..

[13]  Hiroshi Konno,et al.  PIECEWISE LINEAR RISK FUNCTION AND PORTFOLIO OPTIMIZATION , 1990 .

[14]  Chang-Chun Lin,et al.  Genetic algorithms for portfolio selection problems with minimum transaction lots , 2008, Eur. J. Oper. Res..

[15]  Chang-Chun Lin,et al.  A weighted max-min model for fuzzy goal programming , 2004, Fuzzy Sets Syst..

[16]  Romeo Rizzi,et al.  A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem , 2007, Eur. J. Oper. Res..

[17]  Kin Keung Lai,et al.  A model for portfolio selection with order of expected returns , 2000, Comput. Oper. Res..

[18]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[19]  James A. Foster,et al.  The efficient set GA for stock portfolios , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[20]  D Lin,et al.  A MULTIOBJECTIVE GENETIC ALGORITHM FOR PORTFOLIO SELECTION PROBLEM , 2001 .

[21]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[22]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[23]  Amelia Bilbao-Terol,et al.  A fuzzy goal programming approach to portfolio selection , 2001, Eur. J. Oper. Res..

[24]  Maria Grazia Speranza,et al.  On the effectiveness of scenario generation techniques in single-period portfolio optimization , 2009, Eur. J. Oper. Res..

[25]  Sergio Gómez,et al.  Portfolio selection using neural networks , 2005, Comput. Oper. Res..

[26]  Maria Grazia Speranza,et al.  Heuristic algorithms for the portfolio selection problem with minimum transaction lots , 1999, Eur. J. Oper. Res..

[27]  Yves Crama,et al.  Simulated annealing for complex portfolio selection problems , 2003, Eur. J. Oper. Res..

[28]  Hamid Reza Golmakani,et al.  Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm , 2009, Expert Syst. Appl..

[29]  Hans Kellerer,et al.  Selecting Portfolios with Fixed Costs and Minimum Transaction Lots , 2000, Ann. Oper. Res..