Riemann?Hilbert problem for bi-orthogonal polynomials

The 3 × 3 matrix Riemann–Hilbert problem for bi-orthogonal polynomials with the third-degree polynomial potential functions is explicitly constructed. The developed approach can be extended to bi-orthogonal polynomials with arbitrary polynomial potentials.

[1]  A. Kapaev Monodromy Approach to the Scaling Limits in Isomonodromy Systems , 2002, nlin/0211022.

[2]  B. Eynard,et al.  Differential Systems for Biorthogonal Polynomials Appearing in 2-Matrix Models and the Associated Riemann–Hilbert Problem , 2002, nlin/0208002.

[3]  P. Zinn-Justin HCIZ integral and 2D Toda lattice hierarchy , 2002, math-ph/0202045.

[4]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[5]  B. Eynard,et al.  Duality, Biorthogonal Polynomials¶and Multi-Matrix Models , 2001, nlin/0108049.

[6]  K. Mclaughlin,et al.  Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model , 2001 .

[7]  P. Moerbeke Integrable lattices: random matrices and random permutations , 2000, math/0010135.

[8]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[9]  P. Moerbeke,et al.  Generalized Orthogonal Polynomials, Discrete KP and Riemann–Hilbert Problems , 1999, nlin/0009002.

[10]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[11]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[12]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[13]  Alphonse P. Magnus,et al.  Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .

[14]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[15]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[16]  P. Deift,et al.  A steepest descent method for oscillatory Riemann-Hilbert problems , 1992, math/9201261.

[17]  Athanassios S. Fokas,et al.  Discrete Painlevé equations and their appearance in quantum gravity , 1991 .

[18]  Athanassios S. Fokas,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The isomonodromy approach in the theory of two-dimensional quantum gravitation , 1990 .

[19]  Rong-Chyu Sheen Plancherel-Rotach-type asymptotics for orthogonal polynomials associated with exp(- x 6 /6) , 1987 .

[20]  Paul Neval,et al.  Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .

[21]  T. Miwa Painlevé Property of Monodromy Preserving Deformation Equations and the Analyticity of τ Functions , 1981 .

[22]  P. Túrán On orthogonal polynomials , 1975 .

[23]  M. Plancherel,et al.  Sur les valeurs asymptotiques des polynomes d'Hermite $$H_n (x) = ( - I)^n e^{\frac{{x^2 }}{2}} \frac{{d^n }}{{dx^n }}\left( {e^{ - \frac{{x^2 }}{2}} } \right),$$ , 1929 .

[24]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[25]  Bilinear Semi-classical Moment Functionals and Their Integral Representation , 2002 .

[26]  B. Eynard,et al.  Duality , Biorthogonal Polynomials and Multi – Matrix Models 1 , 2001 .

[27]  W. Wasow Asymptotic expansions for ordinary differential equations , 1965 .