Steady-state data reconciliation for absorption refrigeration systems

In this paper data reconciliation is applied to the steady-state operational data of a single-effect ammonia/water absorption chiller. The methodology includes the detection of steady-state, the application of systematic degrees of freedom analysis (in order to determine a suitable set of measured input variables for the absorption chiller model), and data reconciliation of the measurements (which included the treatment of gross errors). The reconciliation problem was solved using a two stage sequential approach in which the objective function is minimized in Matlab and the absorption chiller is simulated in the Engineering Equation Solver (EES). The Modified Iterative Measurement Test was used to detect the measurements that contain gross errors. This methodology makes it possible to identify and eliminate the sources of gross errors, and to obtain performance calculations that are in agreement with the laws of conservation.

[1]  Reinhard Radermacher,et al.  Enhancement of LNG plant propane cycle through waste heat powered absorption cooling , 2012 .

[2]  Jose A. Romagnoli,et al.  Data Processing and Reconciliation for Chemical Process Operations , 1999 .

[3]  J. A. Romagnoli,et al.  A Framework for Robust Data Reconciliation Based on a Generalized Objective Function , 2003 .

[4]  Piotr A. Domanski,et al.  Performance of a residential heat pump operating in the cooling mode with single faults imposed , 2009 .

[5]  W. A. Heenan,et al.  Detecting errors in process data , 1986 .

[6]  Ignacio Ponzoni,et al.  A New Structural Algorithm for Observability Classification , 1999 .

[7]  Luis M. Serra,et al.  Monitoring and simulation of an existing solar powered absorption cooling system in Zaragoza (Spain) , 2011 .

[8]  C. M. Crowe,et al.  Observability and redundancy of process data for steady state reconciliation , 1989 .

[9]  Boris Kalitventzeff,et al.  Methodology for optimization of operation to reduce site-scale energy use in production plants , 1997 .

[10]  Alberto Coronas,et al.  Steady-state operational degrees of freedom in absorption chillers and heat pumps: Methodology and case study , 2012 .

[11]  W. A. Heenan,et al.  DETECTION OF GROSS ERRORS IN NONLINEARLY CONSTRAINED DATA: A CASE STUDY , 1987 .

[12]  R. R. Rhinehart,et al.  An efficient method for on-line identification of steady state , 1995 .

[13]  Bei Hu,et al.  Soft sensors based on nonlinear steady-state data reconciliation in the process industry , 2007 .

[14]  Thomas F. Edgar,et al.  Robust data reconciliation and gross error detection: The modified MIMT using NLP , 1997 .

[15]  R. Serth,et al.  Gross error detection and data reconciliation in steam-metering systems , 1986 .

[16]  C. W. Chan,et al.  A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation , 2013 .

[17]  Jose A. Romagnoli,et al.  Pladat: A package for process variable classification and plant data reconciliation , 1992 .

[18]  J. Plácido,et al.  Industrial application of data reconciliation , 1998 .

[19]  Daniel G. Friend,et al.  A Helmholtz Free Energy Formulation of the Thermodynamic Properties of the Mixture {Water + Ammonia} , 1998 .

[20]  J. C. Bruno,et al.  Analysis and parameter identification for characteristic equations of single- and double-effect absorption chillers by means of multivariable regression , 2010 .

[21]  Piotr A. Domanski,et al.  Design of a steady-state detector for fault detection and diagnosis of a residential air conditioner , 2008 .

[22]  Günter Wozny,et al.  Sequential Parameter Estimation for Large-Scale Systems with Multiple Data Sets. 1. Computational Framework , 2003 .

[23]  C. M. Crowe,et al.  Data reconciliation — Progress and challenges , 1996 .

[24]  J. C. Bruno,et al.  Inverse neural network based control strategy for absorption chillers , 2012 .

[25]  M. Bagajewicz,et al.  Data Reconciliation in Gas Pipeline Systems , 2003 .

[26]  Ignacio Ponzoni,et al.  Direct Method for Structural Observability Analysis , 2004 .

[27]  Xi Chen,et al.  Quasi-weighted least squares estimator for data reconciliation , 2010, Comput. Chem. Eng..

[28]  Jeffrey D. Kelly,et al.  On finding the matrix projection in the data reconciliation solution , 1998 .

[29]  Xiaorong He,et al.  Application of steady-state detection method based on wavelet transform , 2003, Comput. Chem. Eng..

[30]  Daniel Hodouin,et al.  A hierarchical procedure for adjustment and material balancing of mineral processes data , 1980 .

[31]  Alberto Coronas,et al.  Thermodynamic analysis of a trigeneration system consisting of a micro gas turbine and a double effect absorption chiller , 2011 .

[32]  Richard S.H. Mah,et al.  Observability and redundancy classification in generalized process networks—II. Algorithms , 1988 .

[33]  Jose A. Romagnoli,et al.  Data Reconciliation - an Industrial Case Study , 1993 .

[34]  G. M. Stanley,et al.  OBSERVABILITY AND REDUNDANCY IN PROCESS DATA ESTIMATION , 1981 .

[35]  Alberto Coronas,et al.  Performance Analysis of Absorption Chillers Using Data Reconciliation , 2010 .

[36]  Richard S.H. Mah,et al.  Observability and redundancy classification in multicomponent process networks , 1987 .

[37]  Chen Shan Kao,et al.  Detecting changes of steady states using the mathematical theory of evidence , 1987 .

[38]  Diego Martinez Prata,et al.  Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor , 2010 .

[39]  Sigurd Skogestad,et al.  Data reconciliation and optimal operation of a catalytic naphtha reformer , 2008 .

[40]  Éric Poulin,et al.  Impact of plant dynamics on the performance of steady-state data reconciliation , 2010, Comput. Chem. Eng..

[41]  L. Biegler,et al.  Simultaneous strategies for data reconciliation and gross error detection of nonlinear systems , 1991 .

[42]  Xavier Joulia,et al.  Improving steady-state identification , 2008 .

[43]  G. M. Stanley,et al.  Observability and redundancy classification in process networks: Theorems and algorithms , 1981 .

[44]  Ignacio Ponzoni,et al.  Parallel observability analysis on networks of workstations , 2001 .

[45]  Derya B. Özyurt,et al.  Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes , 2004, Comput. Chem. Eng..

[46]  L. Biegler,et al.  Data reconciliation and gross‐error detection for dynamic systems , 1996 .

[47]  B. Koehret,et al.  Data reconciliation on multicomponent network process , 1993 .

[48]  Hua Han,et al.  Study on a hybrid SVM model for chiller FDD applications , 2011 .

[49]  M. Bayazit,et al.  The Power of Statistical Tests for Trend Detection , 2003 .