Towards unification of the Vorticity Confinement and Shock Capturing (TVD and ENO/WENO) methods

Abstract New multidimensional extensions of the TVD and finite difference ENO/WENO methods for the compressible flow equations are proposed. The novelty of the approach is in the discretization schemes that acquire by means of a single mechanism both shock-capturing and vorticity confinement capabilities. Thus, the new method can be interpreted as a unification of the two methodologies, intended initially for different purposes.

[1]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[2]  Lévêque,et al.  High resolution finite volume methods on arbitrary grids via wave propagation. Final report , 1988 .

[3]  Dinshaw S. Balsara,et al.  An efficient class of WENO schemes with adaptive order , 2016, J. Comput. Phys..

[4]  Neil D. Sandham,et al.  Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters , 1999 .

[5]  Meng Fan,et al.  Vorticity Confinement and Advanced Rendering to Compute and Visualize Complex Flows , 2006 .

[6]  M. Costes Analysis of the second vorticity confinement scheme , 2008 .

[7]  G. Iaccarino,et al.  Towards Adaptive Vorticity Confinement , 2009 .

[8]  J. Steinhoff,et al.  Numerical method for vorticity confinement in compressible flow , 2002 .

[9]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[10]  E. Puskás,et al.  COMPUTATION OF THIN FEATURES OVER LONG DISTANCES USING SOLITARY WAVES , 1997 .

[11]  A. Jameson ANALYSIS AND DESIGN OF NUMERICAL SCHEMES FOR GAS DYNAMICS, 2: ARTIFICIAL DIFFUSION AND DISCRETE SHOCK STRUCTURE , 1994 .

[12]  R. Loehner,et al.  Vorticity confinement on unstructured grids , 2002 .

[13]  Chi-Wang Shu,et al.  High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD , 2001 .

[14]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[15]  Gordon Erlebacher,et al.  High-order ENO schemes applied to two- and three-dimensional compressible flow , 1992 .

[16]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[17]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[18]  J. Steinhoff,et al.  Computation of High Reynolds Number Flows Using Vorticity Confinement: I. Formulation , 2005 .

[19]  Antony Jameson,et al.  Time Spectral Method for Rotorcraft Flow , 2008 .

[20]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[21]  Vorticity Confinement technique for preservation of tip vortex of rotating blade , 2013 .

[22]  J. Steinhoff,et al.  Modification of the Euler equations for ‘‘vorticity confinement’’: Application to the computation of interacting vortex rings , 1994 .

[23]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[24]  A. Jameson ANALYSIS AND DESIGN OF NUMERICAL SCHEMES FOR GAS DYNAMICS, 1: ARTIFICIAL DIFFUSION, UPWIND BIASING, LIMITERS AND THEIR EFFECT ON ACCURACY AND MULTIGRID CONVERGENCE , 1995 .

[25]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[26]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[27]  R. LeVeque Numerical methods for conservation laws , 1990 .

[28]  S. Karabasov,et al.  Direct Numerical Simulations of Compressible Vortex Flow Problems , 2012 .

[29]  Yonghu Wenren,et al.  Numerical vorticity confinement for vortex-solid body interaction problems , 1995 .

[30]  A Numerical Method for Vortex Confinement in Compressible Flow , 2000 .

[31]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[32]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[33]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[34]  John Steinhoff,et al.  Computational vorticity capturing - Application to helicopter rotor flows , 1992 .

[35]  David Sidilkover Factorizable schemes for the equations of fluid flow , 1999 .

[36]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[37]  Meng Fan,et al.  Convection of Concentrated Vortices and Passive Scalars as Solitary Waves , 2003, J. Sci. Comput..

[38]  Randall J. LeVeque,et al.  A wave propagation method for three-dimensional hyperbolic conservation laws , 2000 .

[39]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[40]  J. Saltzman,et al.  An unsplit 3D upwind method for hyperbolic conservation laws , 1994 .