A Multistimuli‐Responsive Photochromic Metal‐Organic Gel

A photochromic metal-organic gel with thermo-, photo-, and anion-responsive behavior is obtained. Unusually, heating of the Al-ligand solution leads to gel formation and cooling to room temperature reverses the process to reform the solution. The gel is sensitive to weakly coordinating anions. Additionally, reversible photochromic transformations take place both in the solution and gel states, accompanied by reversibly switched luminescence.

[1]  D. Coster,et al.  Memory effects in gel-solid transformations: Coordinately unsaturated Al sites in nanosized aluminas , 1993 .

[2]  J. Lee,et al.  Coordination polymer gel derived from a tetrazole ligand and Zn2+: spectroscopic and mechanical properties of an amorphous coordination polymer gel , 2012 .

[3]  David K. Smith,et al.  Cation-responsive silver-selective organogel-exploiting silver-alkene interactions in the gel-phase. , 2012, Chemical communications.

[4]  Roland A. Fischer,et al.  Oberflächenchemie Metall‐organischer Gerüste an der Flüssig‐fest‐Grenzfläche , 2011 .

[5]  Eunkyoung Kim,et al.  Photoinduced Refractive Index Change of a Photochromic Diarylethene Polymer , 1999 .

[6]  Eunkyoung Kim,et al.  Development of highly fluorescent photochromic material with high fatigue resistance , 2006 .

[7]  J. Steed,et al.  Anion tuning and polymer templating in a simple low molecular weight organogelator. , 2011, Chemical communications.

[8]  P. Thordarson,et al.  Pyromellitamide aggregates and their response to anion stimuli. , 2007, Journal of the American Chemical Society.

[9]  C. Su,et al.  Evolution of Spherical Assemblies to Fibrous Networked Pd(II) Metallogels from a Pyridine-Based Tripodal Ligand and Their Catalytic Property , 2009 .

[10]  Deqing Zhang,et al.  Light‐Triggered Self‐Assembly of a Spiropyran‐Functionalized Dendron into Nano‐/Micrometer‐Sized Particles and Photoresponsive Organogel with Switchable Fluorescence , 2010 .

[11]  Mingming Zhang,et al.  A Crown Ether Appended Super Gelator with Multiple Stimulus Responsiveness , 2012, Advanced materials.

[12]  Yanmei He,et al.  N-Boc-protected 1,2-diphenylethylenediamine-based dendritic organogels with multiple-stimulus-responsive properties. , 2013, Chemistry, an Asian journal.

[13]  C. Su,et al.  Metal–organic gels as functionalisable supports for catalysis , 2009 .

[14]  N. Nemoto,et al.  Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. , 2004, Journal of the American Chemical Society.

[15]  J. Cravillon,et al.  Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. , 2011, Angewandte Chemie.

[16]  Yanmei He,et al.  Multistimuli Responsive Dendritic Organogels Based on Azobenzene-Containing Poly(aryl ether) Dendron , 2012 .

[17]  Masahiro Irie,et al.  Photochromic Diarylethenes with Intralocking Arms , 1994 .

[18]  B. Escuder,et al.  Control of molecular gelation by chemical stimuli. , 2013, Chemical Society reviews.

[19]  Susumu Kitagawa,et al.  Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. , 2009, Angewandte Chemie.

[20]  B. Tang,et al.  Self-assembly of organic luminophores with gelation-enhanced emission characteristics , 2013 .

[21]  R. Schmid,et al.  Surface chemistry of metal-organic frameworks at the liquid-solid interface. , 2011, Angewandte Chemie.

[22]  H. Tian,et al.  Reversible photo-controllable gels based on bisthienylethene-doped lecithin micelles. , 2013, Chemical communications.

[23]  Bing Xu,et al.  Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules , 2007 .

[24]  Takashi Komori,et al.  Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation , 1994 .

[25]  Wenting Zheng,et al.  Switchable catalytic activity: selenium-containing peptides with redox-controllable self-assembly properties. , 2013, Angewandte Chemie.

[26]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[27]  J. Steed,et al.  Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth , 2010, Nature Chemistry.

[28]  A. Baschieri,et al.  A new tetraarylcyclopentadienone based low molecular weight gelator: synthesis, self-assembly properties and anion recognition , 2012 .

[29]  Ben L Feringa,et al.  Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality , 2004, Science.

[30]  M. Mocerino,et al.  Proline-functionalised calix[4]arene: an anion-triggered hydrogelator. , 2008, Chemical communications.

[31]  I. Voets,et al.  Multiresponsive reversible gels based on charge-driven assembly. , 2010, Angewandte Chemie.

[32]  Toyoichi Tanaka,et al.  The gel that memorizes phases , 2000 .

[33]  H. Tian,et al.  Photochromic bisthienylethene as multi-function switches. , 2007, Chemical communications.

[34]  Eunkyoung Kim,et al.  Highly fluorescent photochromic diarylethene in the closed-ring form. , 2005, Chemical communications.

[35]  R. L. Baldwin,et al.  How Hofmeister ion interactions affect protein stability. , 1996, Biophysical journal.

[36]  S. James,et al.  A metal-organic gel used as a template for a porous organic polymer. , 2005, Chemical communications.

[37]  Jinbo Li,et al.  Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligand-receptor interaction. , 2009, Chemical communications.

[38]  Nicholas A. W. Bell,et al.  A dynamic covalent, luminescent metallopolymer that undergoes sol-to-gel transition on temperature rise. , 2011, Journal of the American Chemical Society.

[39]  Tomohiko Nakamura,et al.  Reversible sol–gel transition of a tris–urea gelator that responds to chemical stimuli , 2007 .

[40]  H. Tian,et al.  A multiple switching bisthienylethene and its photochromic fluorescent organogelator. , 2006, Chemical communications.

[41]  C. Su,et al.  A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels , 2013, Nature Communications.

[42]  Guanxin Zhang,et al.  Stimuli responsive gels based on low molecular weight gelators , 2012 .

[43]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[44]  C. Schalley,et al.  Systems chemistry: logic gates based on the stimuli-responsive gel–sol transition of a crown ether-functionalized bis(urea) gelator , 2012 .

[45]  D. S. Lee,et al.  Oligo(amidoamine)s hydrogels with tunable gel properties. , 2010, Chemical communications.

[46]  He Tian,et al.  Photochromic Materials: More Than Meets The Eye , 2013, Advanced materials.

[47]  C. Su,et al.  Porous organic–inorganic hybrid aerogels based on Cr3+/Fe3+ and rigid bridging carboxylates , 2012 .

[48]  D. Thompson,et al.  pH and cation-responsive supramolecular gels formed by cyclodextrin amines in DMSO. , 2010, Soft matter.

[49]  Guanxin Zhang,et al.  Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups: reversible tuning of the gel-sol transition by redox reactions and light irradiation. , 2010, Journal of the American Chemical Society.

[50]  M. Takafuji,et al.  Anion response of organogels: dependence on intermolecular interactions between gelators. , 2013, Organic & biomolecular chemistry.

[51]  Jianyong Zhang,et al.  A nanocomposite gel based on 1D coordination polymers and nanoclusters reversibly gelate water upon heating , 2012 .