[18F]AV‐1451 tau‐PET and primary progressive aphasia

To assess [18F]AV‐1451 tau‐PET (positron emission tomography) uptake patterns across the primary progressive aphasia (PPA) variants (logopenic, semantic, and agrammatic), examine regional uptake patterns of [18F]AV‐1451 independent of clinical diagnosis, and compare the diagnostic utility of [18F]AV‐1451, [18F]‐fluorodeoxygluclose (FDG)‐PET and MRI (magnetic resonance imaging) to differentiate the PPA variants.

[1]  Keith A. Johnson,et al.  Flortaucipir tau PET imaging in semantic variant primary progressive aphasia , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[2]  D. Na,et al.  [18F]-THK5351 PET Imaging in Patients With Semantic Variant Primary Progressive Aphasia , 2017, Alzheimer disease and associated disorders.

[3]  Luca Passamonti,et al.  [18F]AV-1451 binding in vivo mirrors the expected distribution of TDP-43 pathology in the semantic variant of primary progressive aphasia , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[4]  David T. Jones,et al.  Uptake of AV-1451 in meningiomas , 2017, Annals of Nuclear Medicine.

[5]  J. Phillips,et al.  18F-Flortaucipir PET/MRI Correlations in Nonamnestic and Amnestic Variants of Alzheimer Disease , 2017, The Journal of Nuclear Medicine.

[6]  Keith A. Johnson,et al.  Association of In Vivo [18F]AV-1451 Tau PET Imaging Results With Cortical Atrophy and Symptoms in Typical and Atypical Alzheimer Disease , 2017, JAMA neurology.

[7]  Gil D Rabinovici,et al.  Elevated 18F-AV-1451 PET tracer uptake detected in incidental imaging findings , 2017, Neurology.

[8]  B. Miller,et al.  Typical and atypical pathology in primary progressive aphasia variants , 2017, Annals of neurology.

[9]  Anthony J. Spychalla,et al.  [18F]AV‐1451 tau positron emission tomography in progressive supranuclear palsy , 2017, Movement disorders : official journal of the Movement Disorder Society.

[10]  Keith A. Johnson,et al.  Pathological correlations of [F‐18]‐AV‐1451 imaging in non‐alzheimer tauopathies , 2017, Annals of neurology.

[11]  Hanna Cho,et al.  Subcortical 18F‐AV‐1451 binding patterns in progressive supranuclear palsy , 2017, Movement disorders : official journal of the Movement Disorder Society.

[12]  Nick C Fox,et al.  Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer's disease, primary tauopathies, and other dementias , 2016, Alzheimer's & Dementia.

[13]  C. Jack,et al.  [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration , 2016, Acta Neuropathologica.

[14]  W. Klunk,et al.  [F‐18]AV‐1451 positron emission tomography retention in choroid plexus: More than “off‐target” binding , 2016, Annals of neurology.

[15]  Clifford R. Jack,et al.  An autoradiographic evaluation of AV-1451 Tau PET in dementia , 2016, Acta Neuropathologica Communications.

[16]  Daniel R. Schonhaut,et al.  Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. , 2016, Brain : a journal of neurology.

[17]  Keith A. Johnson,et al.  Validating novel tau positron emission tomography tracer [F‐18]‐AV‐1451 (T807) on postmortem brain tissue , 2015, Annals of neurology.

[18]  David T. Jones,et al.  Classification and clinicoradiologic features of primary progressive aphasia (PPA) and apraxia of speech , 2015, Cortex.

[19]  Μαρία Πιτοπούλου,et al.  Μελέτη των διαταραχών του λόγου σε ασθενείς με ανοϊκά σύνδρομα με τη χρήση του Western Aphasia Battery - Revised , 2014 .

[20]  C. Geula,et al.  Asymmetry and heterogeneity of Alzheimer's and frontotemporal pathology in primary progressive aphasia. , 2014, Brain : a journal of neurology.

[21]  H. Kolb,et al.  [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease , 2013, Alzheimer's & Dementia.

[22]  C. Jack,et al.  Quantitative neurofibrillary tangle density and brain volumetric MRI analyses in Alzheimer’s disease presenting as logopenic progressive aphasia , 2013, Brain and Language.

[23]  J. Hodges,et al.  Distinguishing Subtypes in Primary Progressive Aphasia: Application of the Sydney Language Battery , 2013, Dementia and Geriatric Cognitive Disorders.

[24]  K. Patterson,et al.  Primary progressive aphasia , 2012, Neurology.

[25]  C. Jack,et al.  Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech , 2012, Brain : a journal of neurology.

[26]  J. Hodges,et al.  Neuropathological background of phenotypical variability in frontotemporal dementia , 2011, Acta Neuropathologica.

[27]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[28]  F. Pasquier,et al.  Prediction of pathology in primary progressive language and speech disorders , 2010, Neurology.

[29]  M. Mesulam,et al.  The Northwestern Anagram Test: Measuring Sentence Production in Primary Progressive Aphasia , 2009, American journal of Alzheimer's disease and other dementias.

[30]  D. Dickson,et al.  Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes , 2009, Acta Neuropathologica.

[31]  J. Jankovic,et al.  Movement Disorder Society‐sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS‐UPDRS): Scale presentation and clinimetric testing results , 2008, Movement disorders : official journal of the Movement Disorder Society.

[32]  W. Jagust,et al.  Aβ amyloid and glucose metabolism in three variants of primary progressive aphasia , 2008, Annals of neurology.

[33]  C. Jack,et al.  11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. , 2008, Brain : a journal of neurology.

[34]  V. Pankratz,et al.  The Mayo Clinic Study of Aging: Design and Sampling, Participation, Baseline Measures and Sample Characteristics , 2008, Neuroepidemiology.

[35]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[36]  Jennifer L. Whitwell,et al.  Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. , 2006, Brain : a journal of neurology.

[37]  J. Cummings,et al.  The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment , 2005, Journal of the American Geriatrics Society.

[38]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[39]  Sasha Bozeat,et al.  Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? , 2000, Journal of neurology, neurosurgery, and psychiatry.

[40]  J. Cummings,et al.  Validation of the NPI-Q, a brief clinical form of the Neuropsychiatric Inventory. , 2000, The Journal of neuropsychiatry and clinical neurosciences.

[41]  Richard S. J. Frackowiak,et al.  A voxel‐based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory , 2000, Annals of neurology.

[42]  L. Rapport,et al.  Validation of the Warrington theory of visual processing and the Visual Object and Space Perception Battery. , 1998, Journal of clinical and experimental neuropsychology.

[43]  E. Warrington,et al.  Four easy memory tests for older adults. , 1994, Memory.

[44]  R. A. Crowther,et al.  Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease , 1989, Neuron.

[45]  M. Mesulam,et al.  Slowly progressive aphasia without generalized dementia , 1982, Annals of neurology.

[46]  Christopher G Schwarz,et al.  Widespread brain tau and its association with ageing, Braak stage and Alzheimer's dementia. , 2018, Brain : a journal of neurology.

[47]  D. Tranel,et al.  Neuropsychological assessment, 5th ed. , 2012 .

[48]  Young T. Hong,et al.  AV-1451 binding in vivo mirrors the expected distribution of TDP-43 pathology in the semantic variant of primary progressive aphasia , 2022 .