'Shortcardiac'- An Open-Source Framework for Fast and Standardized Assessment of Cardiac Function

[1]  N. Zhang,et al.  Prognostic Significance of Cardiac Magnetic Resonance in Left Atrial and Biventricular Strain Analysis during the Follow-Up of Suspected Myocarditis , 2023, Journal of clinical medicine.

[2]  Yunfeng Cui,et al.  Impact of image quality on radiomics applications , 2022, Physics in medicine and biology.

[3]  A. Müller-Lutz,et al.  Lorentzian-Corrected Apparent Exchange-Dependent Relaxation (LAREX) Ω-Plot Analysis—An Adaptation for qCEST in a Multi-Pool System: Comprehensive In Silico, In Situ, and In Vivo Studies , 2022, International journal of molecular sciences.

[4]  A. Müller-Lutz,et al.  Chemical Exchange Saturation Transfer for Lactate-Weighted Imaging at 3 T MRI: Comprehensive In Silico, In Vitro, In Situ, and In Vivo Evaluations , 2022, Tomography.

[5]  S. Schoenberg,et al.  Comparison Study of Myocardial Radiomics Feature Properties on Energy-Integrating and Photon-Counting Detector CT , 2022, Diagnostics.

[6]  Jan S. Hussmann,et al.  Comparison of cardiac volumetry using real-time MRI during free-breathing with standard cine MRI during breath-hold in children , 2022, Pediatric Radiology.

[7]  A. A. Alattab,et al.  Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network , 2022, Diagnostics.

[8]  P. Munroe,et al.  Cardiac Magnetic Resonance Radiomics Reveal Differential Impact of Sex, Age, and Vascular Risk Factors on Cardiac Structure and Myocardial Tissue , 2021, Frontiers in Cardiovascular Medicine.

[9]  G. Xiao,et al.  Fully automated grading system for the evaluation of punctate epithelial erosions using deep neural networks , 2021, British Journal of Ophthalmology.

[10]  G. Antoch,et al.  Micro- and Macroscale Assessment of Posterior Cruciate Ligament Functionality Based on Advanced MRI Techniques , 2021, Diagnostics.

[11]  G. Hasenfuss,et al.  Head-to-Head Comparison of Different Software Solutions for AVC Quantification Using Contrast-Enhanced MDCT , 2021, Journal of clinical medicine.

[12]  Jan S. Hussmann,et al.  Spirometry‐based reconstruction of real‐time cardiac MRI: Motion control and quantification of heart–lung interactions , 2021, Magnetic resonance in medicine.

[13]  Mehran Azimbagirad,et al.  Prediction of Radiation-Related Dental Caries Through PyRadiomics Features and Artificial Neural Network on Panoramic Radiography , 2021, Journal of Digital Imaging.

[14]  B. Yanagawa,et al.  The cardiac surgeon's guide to artificial intelligence , 2021, Current opinion in cardiology.

[15]  J. Frahm,et al.  Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease , 2021, Diagnostics.

[16]  O. Levtzion-korach,et al.  [THE IMPACT OF ARTIFICIAL INTELLIGENCE AND BIG DATA ON HEALTHCARE]. , 2021, Harefuah.

[17]  S. Petersen,et al.  Cardiovascular magnetic resonance imaging in the UK Biobank: a major international health research resource , 2020, European heart journal cardiovascular Imaging.

[18]  Treena S. Basu,et al.  Artificial Intelligence: How is It Changing Medical Sciences and Its Future? , 2020, Indian journal of dermatology.

[19]  A. Raţiu,et al.  Cardiac axis evaluation as a screening method for detecting cardiac abnormalities in the first trimester of pregnancy , 2020, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie.

[20]  Yuchi Han,et al.  Diagnostic and prognostic value of right ventricular eccentricity index in pulmonary artery hypertension , 2020, Pulmonary circulation.

[21]  Víctor M. Campello,et al.  Cardiac magnetic resonance radiomics: basic principles and clinical perspectives , 2020, European heart journal cardiovascular Imaging.

[22]  Georg Langs,et al.  Introduction to Radiomics , 2020, The Journal of Nuclear Medicine.

[23]  E. V. van Beek,et al.  A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography , 2019, European heart journal.

[24]  Hans-Jörg Wittsack,et al.  Analysis of different phase unwrapping methods to optimize quantitative susceptibility mapping in the abdomen , 2019, Magnetic resonance in medicine.

[25]  T. Davenport,et al.  The potential for artificial intelligence in healthcare , 2019, Future Healthcare Journal.

[26]  P. Greer,et al.  Characterization of prostate cancer using diffusion tensor imaging: A new perspective. , 2019, European journal of radiology.

[27]  Massimo Bellomi,et al.  Radiomics: the facts and the challenges of image analysis , 2018, European Radiology Experimental.

[28]  Ruzena Bajcsy,et al.  Fully Automated Echocardiogram Interpretation in Clinical Practice , 2018, Circulation.

[29]  Ziv Yaniv,et al.  Left Ventricle Segmentation and Quantification from Cardiac Cine MR Images via Multi-task Learning , 2018, STACOM@MICCAI.

[30]  H. Alkadhi,et al.  Texture analysis and machine learning of non-contrast T1-weighted MR images in patients with hypertrophic cardiomyopathy-Preliminary results. , 2018, European journal of radiology.

[31]  Ashutosh Tewari,et al.  Advanced Diffusion-weighted Imaging Modeling for Prostate Cancer Characterization: Correlation with Quantitative Histopathologic Tumor Tissue Composition-A Hypothesis-generating Study. , 2017, Radiology.

[32]  P. Lambin,et al.  Radiomics: the bridge between medical imaging and personalized medicine , 2017, Nature Reviews Clinical Oncology.

[33]  P. Marzullo,et al.  Left ventricular eccentricity index measured with SPECT myocardial perfusion imaging: An additional parameter of adverse cardiac remodeling , 2017, Journal of Nuclear Cardiology.

[34]  Stefan Leger,et al.  Image biomarker standardisation initiative version 1 . 4 , 2016, 1612.07003.

[35]  Jens Frahm,et al.  Real-time MRI of the temporomandibular joint at 15 frames per second-A feasibility study. , 2016, European journal of radiology.

[36]  Terry K Koo,et al.  A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. , 2016, Journal Chiropractic Medicine.

[37]  Hiroshi Honda,et al.  Clinical impact of left ventricular eccentricity index using cardiac MRI in assessment of right ventricular hemodynamics and myocardial fibrosis in congenital heart disease , 2016, European Radiology.

[38]  Richard A Armstrong,et al.  When to use the Bonferroni correction , 2014, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[39]  Jens Frahm,et al.  On the temporal fidelity of nonlinear inverse reconstructions for real- time MRI – The motion challenge. , 2014 .

[40]  Jens Frahm,et al.  Real-time cardiovascular magnetic resonance at 1.5 T using balanced SSFP and 40 ms resolution , 2013, Journal of Cardiovascular Magnetic Resonance.

[41]  J. Grapsa,et al.  Assessment of Right Ventricular Structure and Function in Pulmonary Hypertension , 2011, Journal of cardiovascular ultrasound.

[42]  Jens Frahm,et al.  Real‐time MRI at a resolution of 20 ms , 2010, NMR in biomedicine.

[43]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[44]  Geoffrey J. Gordon,et al.  Artificial intelligence in medicine , 1989, Singapore medical journal.

[45]  E Picano,et al.  Quantitative texture analysis in two-dimensional echocardiography: application to the diagnosis of myocardial amyloidosis. , 1989, Journal of the American College of Cardiology.

[46]  J. Fleiss,et al.  Intraclass correlations: uses in assessing rater reliability. , 1979, Psychological bulletin.

[47]  B. Merkely,et al.  Cardiac Computed Tomography Radiomics: A Comprehensive Review on Radiomic Techniques , 2018, Journal of thoracic imaging.