CellLab-CTS 2015: a Python library for continuous-time stochastic cellular automaton modeling using Landlab

CellLab-CTS 2015: a Python library for continuous-time stochastic cellular automaton modeling using Landlab G. E. Tucker, D. E. J. Hobley, E. Hutton, N. M. Gasparini, E. Istanbulluoglu, J. M. Adams, and S. S. Nudurupati Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, USA Department of Geological Sciences, University of Colorado, Boulder, USA Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Boulder, USA Department of Earth and Environmental Sciences, Tulane University, New Orleans, USA Department of Civil and Environmental Engineering, University of Washington, Seattle, USA

[1]  David Jon Furbish,et al.  From divots to swales: Hillslope sediment transport across divers length scales , 2010 .

[2]  Clément Narteau,et al.  Morphodynamics of barchan and transverse dunes using a cellular automaton model , 2010 .

[3]  D. N. Bradley,et al.  Trouble with diffusion: Reassessing hillslope erosion laws with a particle-based model , 2010 .

[4]  Wilmott,et al.  Cellular-automaton model for segregation of a two-species granular flow. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  Robert P. Behringer,et al.  Cellular automata models for the flow of granular materials , 1991 .

[6]  Herrmann,et al.  Shape of the Tail of a Two-Dimensional Sandpile. , 1996, Physical review letters.

[7]  Herrmann,et al.  Density waves of granular flow in a pipe using lattice-gas automata. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Homa Karimabadi,et al.  Self-adaptive time integration of flux-conservative equations with sources , 2006, J. Comput. Phys..

[9]  D. Hicks,et al.  Cellular modelling of river catchments and reaches: Advantages, limitations and prospects , 2007 .

[10]  Leonardo Noto,et al.  Climate change and Ecotone boundaries: Insights from a cellular automata ecohydrology model in a Mediterranean catchment with topography controlled vegetation patterns , 2014 .

[11]  Susan L. Brantley,et al.  A reactive diffusion model describing transformation of bedrock to saprolite , 2007 .

[12]  C. Paola,et al.  Complexity in a cellular model of river avulsion , 2007 .

[13]  E. F. Codd,et al.  Cellular automata , 1968 .

[14]  Jean-Paul Poirier,et al.  On a small-scale roughness of the core–mantle boundary , 2001 .

[15]  Harihar Rajaram,et al.  Investigating the influence of subsurface heterogeneity on chemical weathering in the critical zone using high resolution reactive transport models , 2014 .

[16]  Andrew P. Nicholas,et al.  Cellular modelling in fluvial geomorphology , 2005 .

[17]  Troy Shinbrot,et al.  Cellular automata model of gravity-driven granular flows , 2007 .

[18]  Shlomo Havlin,et al.  Filling a silo with a mixture of grains: Friction-induced segregation , 1998 .

[19]  Dominique Désérable,et al.  Open Environment for 2d Lattice-Grain CA , 2010, ACRI.

[20]  L. Arnold,et al.  Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose , 2006 .

[21]  M. Wiel,et al.  A cellular model of river meandering , 2006 .

[22]  Behringer,et al.  Cellular automata models of granular flow. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[23]  Susan L. Brantley,et al.  A mathematical model for steady‐state regolith production at constant erosion rate , 2010 .

[24]  Kate Maher,et al.  The dependence of chemical weathering rates on fluid residence time , 2009 .

[25]  Clement G. Chase,et al.  Fluvial landsculpting and the fractal dimension of topography , 1992 .

[26]  Homa Karimabadi,et al.  A time-accurate explicit multi-scale technique for gas dynamics , 2007, J. Comput. Phys..

[27]  Enrique R. Vivoni,et al.  Modeling the ecohydrological role of aspect‐controlled radiation on tree‐grass‐shrub coexistence in a semiarid climate , 2013 .

[28]  Dominique Désérable,et al.  Cellular Automata in Complex Matter , 2011, Complex Syst..

[29]  C. Paola,et al.  A cellular model of braided rivers , 1994, Nature.

[30]  J Martinez,et al.  Lattice grain models , 1998 .

[31]  Clément Narteau,et al.  A real‐space cellular automaton laboratory , 2013 .

[32]  M. Kirkby,et al.  A cellular model of Holocene upland river basin and alluvial fan evolution , 2002 .

[33]  Robert S. Anderson,et al.  Eolian ripples as examples of self-organization in geomorphological systems , 1990 .

[34]  V. A. Osinov A model of a discrete stochastic medium for the problems of loose material flow , 1994 .

[35]  P. Haff,et al.  A probabilistic description of the bed load sediment flux: 1. Theory , 2012 .

[36]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[37]  Clément Narteau,et al.  Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms , 2008 .

[38]  B. T. Werner,et al.  Nonlinear dynamics of ice-wedge networks and resulting sensitivity to severe cooling events , 2002, Nature.

[39]  Clément Narteau,et al.  Morphology and dynamics of star dunes from numerical modelling , 2012 .

[40]  Daniel H. Rothman,et al.  Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics , 1997 .

[41]  Janos Kertesz,et al.  LATTICE-GAS MODEL OF AVALANCHES IN A GRANULAR PILE , 1998 .

[42]  B. T. Werner,et al.  A model for sorted circles as self-organized patterns , 2001 .

[43]  B. Werner Eolian dunes: Computer simulations and attractor interpretation , 1995 .

[44]  C. Fred Higgs,et al.  A fast first order model of a rough annular shear cell using cellular automata , 2010 .

[45]  Peter K. Haff,et al.  Microtopography as an indicator of modern hillslope diffusivity in arid terrain , 1997 .

[46]  Homa Karimabadi,et al.  A new asynchronous methodology for modeling of physical systems: breaking the curse of courant condition , 2005 .

[47]  R. Anderson,et al.  Grain size segregation and stratigraphy in aeolian ripples modelled with a cellular automaton , 1993, Nature.

[48]  C. Fred Higgs,et al.  A Lattice-Based Cellular Automata Modeling Approach for Granular Flow Lubrication , 2006 .

[49]  János Kertész,et al.  Granular medium lattice gas model: the algorithm , 1999 .

[50]  Dominique Désérable,et al.  A Versatile Two-dimensional Cellular Automata Network for Granular Flow , 2002, SIAM J. Appl. Math..

[51]  Edward J. Rhodes,et al.  Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years , 2011 .

[52]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[53]  Jacek Tejchman,et al.  Application of a cellular automaton to simulations of granular flow in silos , 2005 .

[54]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[55]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[56]  U. Frisch,et al.  Lattice gas models for 3D hydrodynamics , 1986 .

[57]  G. M. Gutt,et al.  An Automata Model of Granular Materials , 1990, Proceedings of the Fifth Distributed Memory Computing Conference, 1990..