Adaptive time stepping for fluid-structure interaction solvers

Abstract A novel adaptive time stepping scheme for fluid-structure interaction (FSI) problems is proposed that allows for controlling the accuracy of the time-discrete solution. Furthermore, it eases practical computations by providing an efficient and very robust time step size selection. This has proven to be very useful, especially when addressing new physical problems, where no educated guess for an appropriate time step size is available. The fluid and the structure field, but also the fluid-structure interface are taken into account for the purpose of a posteriori error estimation, rendering it easy to implement and only adding negligible additional cost. The adaptive time stepping scheme is incorporated into a monolithic solution framework, but can straightforwardly be applied to partitioned solvers as well. The basic idea can be extended to the coupling of an arbitrary number of physical models. Accuracy and efficiency of the proposed method are studied in a variety of numerical examples ranging from academic benchmark tests to complex biomedical applications like the pulsatile blood flow through an abdominal aortic aneurysm. The demonstrated accuracy of the time-discrete solution in combination with reduced computational cost make this algorithm very appealing in all kinds of FSI applications.

[1]  Serge Piperno,et al.  Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations , 1997 .

[2]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[3]  Matthias Mayr,et al.  A Temporal Consistent Monolithic Approach to Fluid-Structure Interaction Enabling Single Field Predictors , 2015, SIAM J. Sci. Comput..

[4]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[5]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[6]  Alessandro Veneziani,et al.  Pressure Correction Algebraic Splitting Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[7]  Donald Estep,et al.  Blockwise Adaptivity for Time Dependent Problems Based on Coarse Scale Adjoint Solutions , 2010, SIAM J. Sci. Comput..

[8]  K. C. Park,et al.  A variable-step central difference method for structural dynamics analysis- part 2. Implementation and performance evaluation , 1980 .

[9]  Ekkehard Ramm,et al.  Shell structures—a sensitive interrelation between physics and numerics , 2004 .

[10]  John N. Shadid,et al.  Towards efficient backward-in-time adjoint computations using data compression techniques , 2015 .

[11]  Wolfgang A. Wall,et al.  Fluid–structure interaction for non-conforming interfaces based on a dual mortar formulation , 2011 .

[12]  Gregory M. Hulbert,et al.  Automatic time step control algorithm for structural dynamics , 1995 .

[13]  Pedro Díez,et al.  Modal‐based goal‐oriented error assessment for timeline‐dependent quantities in transient dynamics , 2013 .

[14]  Yi Min Xie,et al.  A simple error estimator and adaptive time stepping procedure for dynamic analysis , 1991 .

[15]  Matthias Mayr,et al.  A hybrid interface preconditioner for monolithic fluid–structure interaction solvers , 2020, Adv. Model. Simul. Eng. Sci..

[16]  Carlos A. Felippa,et al.  Staggered transient analysis procedures for coupled mechanical systems: Formulation , 1980 .

[17]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[18]  Pedro Díez,et al.  Goal-oriented space-time adaptivity for transient dynamics using a modal description of the adjoint solution , 2014, Computational Mechanics.

[19]  Stephane Etienne,et al.  High-order temporal accuracy for 3D finite-element ALE flow simulations , 2014 .

[20]  M L Raghavan,et al.  Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. , 2000, Journal of biomechanics.

[21]  Chang-Koon Choi,et al.  Error estimates and adaptive time stepping for various direct time integration methods , 1996 .

[22]  Gustaf Söderlind,et al.  Time-step selection algorithms: Adaptivity, control, and signal processing , 2006 .

[23]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[24]  Ekkehard Ramm,et al.  On the geometric conservation law in transient flow calculations on deforming domains , 2006 .

[25]  Claes Johnson Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .

[26]  Ted Belytschko,et al.  Mixed methods for time integration , 1979 .

[27]  M. Kronbichler,et al.  An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow , 2010 .

[28]  Nils-Erik Wiberg,et al.  Implementation and adaptivity of a space-time finite element method for structural dynamics , 1998 .

[29]  Mahmoud Ismail,et al.  Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models , 2013, J. Comput. Phys..

[30]  Nils-Erik Wiberg,et al.  A Posteriori Local Error Estimation and Adaptive Time-stepping for Newmark Integration in Dynamic Analysis , 1992 .

[31]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[32]  Nils-Erik Wiberg,et al.  A Simple Local Error Estimator and an Adaptive Time-stepping Procedure for Direct Integration Method in Dynamic Analysis , 1993 .

[33]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part I: Scalar Advection-Diffusion , 2008, SIAM J. Sci. Comput..

[34]  K. C. Park,et al.  A variable-step central difference method for structural dynamics analysis — part 1. Theoretical aspects , 1980 .

[35]  Tom De Mulder,et al.  The role of bulk viscosity in stabilized finite element formulations for incompressible flow: A review , 1998 .

[36]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[37]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[38]  L. Shampine Local error control in codes for ordinary differential equations , 1977 .

[39]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[40]  W. Wall,et al.  A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction , 2010, Annals of Biomedical Engineering.

[41]  J. Faires,et al.  Numerical Methods , 2002 .

[42]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[43]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part II: Navier--Stokes Equations , 2010, SIAM J. Sci. Comput..

[44]  Ekkehard Ramm,et al.  Local and global error estimations in linear structural dynamics , 2000 .

[45]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[46]  Matthias Mayr,et al.  A Monolithic Solver for Fluid-Structure Interaction with Adaptive Time Stepping and a Hybrid Preconditioner , 2016 .

[47]  Daniele Boffi,et al.  Stability and geometric conservation laws for ALE formulations , 2004 .

[48]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[49]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[50]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[51]  K. Gustafsson,et al.  API stepsize control for the numerical solution of ordinary differential equations , 1988 .

[52]  Miguel A. Fernández,et al.  Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics , 2009, SIAM J. Sci. Comput..

[53]  Ignacio Romero,et al.  A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics , 2006 .

[54]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[55]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[56]  Lieve Lanoye,et al.  Effect of an Abdominal Aortic Aneurysm on Wave Reflection in the Aorta , 2008, IEEE Transactions on Biomedical Engineering.

[57]  Pavel B. Bochev,et al.  On inf-sup stabilized finite element methods for transient problems , 2004 .

[58]  Wolfgang A. Wall,et al.  A computational strategy for prestressing patient‐specific biomechanical problems under finite deformation , 2010 .

[59]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[60]  Jeffrey W. Banks,et al.  An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids , 2014, J. Comput. Phys..

[61]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[62]  J-F Gerbeau,et al.  External tissue support and fluid–structure simulation in blood flows , 2012, Biomechanics and modeling in mechanobiology.

[63]  Nils-Erik Wiberg,et al.  A Post-Processing Technique and an a Posteriori Error Estimate for the Newmark Method in Dynamic Analysis , 1993 .

[64]  Pavel B. Bochev,et al.  On stabilized finite element methods for the Stokes problem in the small time step limit , 2007 .

[65]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[66]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[67]  D. Owen,et al.  Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .

[68]  Volker Gravemeier,et al.  A novel formulation for Neumann inflow boundary conditions in biomechanics , 2012, International journal for numerical methods in biomedical engineering.

[69]  Jintai Chung,et al.  A priori error estimator of the generalized‐α method for structural dynamics , 2003 .

[70]  Alessandro Veneziani,et al.  ALADINS: An ALgebraic splitting time ADaptive solver for the Incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[71]  Yue Yu,et al.  Generalized fictitious methods for fluid-structure interactions: Analysis and simulations , 2013, J. Comput. Phys..

[72]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .