An Adaptive Finite Element Method with Perfectly Matched Absorbing Layers for the Wave Scattering by Periodic Structures

We develop a finite element adaptive strategy with error control for the wave scattering by periodic structures. The unbounded computational domain is truncated to a bounded one by an extension of the perfectly matched layer (PML) technique, which attenuates both the outgoing and evanescent waves in the PML region. PML parameters such as the thickness of the layer and the medium property are determined through sharp a posteriori error estimates. Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method.

[1]  Peter Monk,et al.  A posteriori error indicators for Maxwell's equations , 1998 .

[2]  J. Allen Cox,et al.  Mathematical studies in rigorous grating theory , 1995 .

[3]  Yanzhao Cao,et al.  Numerical solution of diffraction problems by a least-squares finite element method , 2000 .

[4]  Avner Friedman,et al.  The time-harmonic maxwell equations in a doubly periodic structure , 1992 .

[5]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[6]  Zhiming Chen,et al.  On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..

[7]  Endre Süli,et al.  The Adaptive Computation of Far-Field Patterns by A Posteriori Error Estimation of Linear Functionals , 1998 .

[8]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[9]  Zhiming Chen,et al.  Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg-Landau Model in Superconductivity , 2000, SIAM J. Numer. Anal..

[10]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[11]  Ivo Babuška,et al.  Lectures on mathematical foundations of the finite element method. , 1972 .

[12]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[13]  GANG BAO,et al.  Variational Approximation of Maxwell's Equations in Biperiodic Structures , 1997, SIAM J. Appl. Math..

[14]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[15]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[16]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[17]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[18]  David C. Dobson,et al.  A variational method for electromagnetic diffraction in biperiodic structures , 1994 .