Reproducibility and variability of quantitative MRI markers in cerebral small vessel disease

François De Guio1,2, Eric Jouvent1,2,3, Geert Jan Biessels4, Sandra E. Black5, Carol Brayne6, Christopher Chen7, Charlotte Cordonnier8, Frank-Eric De Leeuw9, Martin Dichgans10,11, Fergus Doubal12, Marco Duering10, Carole Dufouil13, Emrah Duzel14, Franz Fazekas15, Vladimir Hachinski16, M. Arfan Ikram17,18, Jennifer Linn19, Paul M. Matthews20, Bernard Mazoyer21, Vincent Mok22, Bo Norrving23, John T. O’Brien24, Leonardo Pantoni25, Stefan Ropele15, Perminder Sachdev26, Reinhold Schmidt15, Sudha Seshadri27, Eric E. Smith28, Luciano A. Sposato16, Blossom Stephan29, Richard H. Swartz5, Christophe Tzourio13, Mark van Buchem30, Aad van der Lugt17, Robert van Oostenbrugge31, Meike W. Vernooij17, Anand Viswanathan32, David Werring33, Frank Wollenweber10, Joanna M. Wardlaw12,34, Hugues Chabriat1,2,3

[1]  Eleni Sakka,et al.  Blood pressure and sodium: Association with MRI markers in cerebral small vessel disease , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  Gary R Cutter,et al.  Pooling Morphometric Estimates: A Statistical Equivalence Approach , 2016, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[3]  Joanna M. Wardlaw,et al.  Brain volumetric changes and cognitive ageing during the eighth decade of life , 2015, Human brain mapping.

[4]  D. Louis Collins,et al.  Diurnal fluctuations in brain volume: Statistical analyses of MRI from large populations , 2015, NeuroImage.

[5]  Rohit Bakshi,et al.  Handling changes in MRI acquisition parameters in modeling whole brain lesion volume and atrophy data in multiple sclerosis subjects: Comparison of linear mixed-effect models , 2015, NeuroImage: Clinical.

[6]  Joanna M. Wardlaw,et al.  Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method , 2015, PloS one.

[7]  Jan M. Seabaugh,et al.  Man Versus Machine Part 2: Comparison of Radiologists' Interpretations and NeuroQuant Measures of Brain Asymmetry and Progressive Atrophy in Patients With Traumatic Brain Injury. , 2015, The Journal of neuropsychiatry and clinical neurosciences.

[8]  Joanna M Wardlaw,et al.  What are White Matter Hyperintensities Made of? , 2015, Journal of the American Heart Association.

[9]  D. Jaffray,et al.  Harmonic analysis for the characterization and correction of geometric distortion in MRI. , 2014, Medical physics.

[10]  F. Barkhof,et al.  The SIENA/FSL whole brain atrophy algorithm is no more reproducible at 3T than 1.5T for Alzheimer׳s disease , 2014, Psychiatry Research: Neuroimaging.

[11]  Mathias Davids,et al.  Fully-automated quality assurance in multi-center studies using MRI phantom measurements. , 2014, Magnetic resonance imaging.

[12]  H. Markus,et al.  Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study , 2013, PloS one.

[13]  Atsushi Kawaguchi,et al.  Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom. , 2013, Medical physics.

[14]  P. Nederkoorn,et al.  Cerebral small-vessel disease and progression of brain atrophy , 2012, Neurology.

[15]  Cristina Granziera,et al.  Effects of MRI scan acceleration on brain volume measurement consistency , 2012, Journal of magnetic resonance imaging : JMRI.

[16]  Xue Wang,et al.  Reproducibility of Structural, Resting-State BOLD and DTI Data between Identical Scanners , 2012, PloS one.

[17]  J. Ferro,et al.  Brain atrophy accelerates cognitive decline in cerebral small vessel disease , 2012, Neurology.

[18]  Torsten Rohlfing,et al.  Combining atlas-based parcellation of regional brain data acquired across scanners at 1.5T and 3.0T field strengths , 2012, NeuroImage.

[19]  K. Ohtomo,et al.  Effect of scanner in longitudinal studies of brain volume changes , 2011, Journal of magnetic resonance imaging : JMRI.

[20]  Osamu Abe,et al.  Effects of gradient non‐linearity correction and intensity non‐uniformity correction in longitudinal studies using structural image evaluation using normalization of atrophy (SIENA) , 2010, Journal of magnetic resonance imaging : JMRI.

[21]  D. Louis Collins,et al.  Gradient distortions in MRI: Characterizing and correcting for their effects on SIENA-generated measures of brain volume change , 2010, NeuroImage.

[22]  H. Chabriat,et al.  Cerebral Atrophy in Cerebrovascular Disorders , 2009, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[23]  Jean-Philippe Thiran,et al.  Automatic quality assessment in structural brain magnetic resonance imaging , 2009, Magnetic resonance in medicine.

[24]  Joanna M. Wardlaw,et al.  Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: Procedure development using CaliBrain structural MRI data , 2009, BMC Medical Imaging.

[25]  Jean-Francois Mangin,et al.  Measurement of brain atrophy in subcortical vascular disease: A comparison of different approaches and the impact of ischaemic lesions , 2008, NeuroImage.

[26]  Douglas L Arnold,et al.  Automated quality control of brain MR images , 2008, Journal of magnetic resonance imaging : JMRI.

[27]  M. Dichgans,et al.  Brain volume changes in CADASIL , 2006, Neurology.

[28]  Clifford R Jack,et al.  Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI , 2006, NeuroImage.

[29]  Anders M. Dale,et al.  Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data , 2006, NeuroImage.

[30]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[31]  W. Heindel,et al.  Dehydration confounds the assessment of brain atrophy , 2005, Neurology.

[32]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[33]  E. Duchesnay,et al.  A framework to study the cortical folding patterns , 2004, NeuroImage.

[34]  Stephen M. Smith,et al.  Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis , 2002, NeuroImage.

[35]  M N Rossor,et al.  Progressive brain atrophy on serial MRI in dementia with Lewy bodies, AD, and vascular dementia , 2001, Neurology.

[36]  P. Matthews,et al.  Normalized Accurate Measurement of Longitudinal Brain Change , 2001, Journal of computer assisted tomography.

[37]  G H Glover,et al.  Effects of Image Orientation on the Comparability of Pediatric Brain Volumes Using Three-Dimensional MR Data , 2001, Journal of computer assisted tomography.

[38]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[39]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[40]  Nick C. Fox,et al.  The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI , 1997, IEEE Transactions on Medical Imaging.