Algebraic Properties of Generalized Multisets

We present generalized multisets in the Zermelo-Fraenkel framework, in Reverse Mathematics, and in the Fraenkel-Mostowski framework. In the Zermelo-Fraenkel framework, we prove that the set of all generalized multisets over a certain finite set is a finitely-generated, lattice-ordered, free abelian group. Similar properties are then discussed in Reverse Mathematics. Finally, we study the generalized multisets in the Fraenkel-Mostowski framework, and present their nominal properties. Several Zermelo-Fraenkel algebraic properties of generalized multisets are translated into the Fraenkel-Mostowski framework by using the finite support axiom of the Fraenkel-Mostowski set theory.

[1]  A. M. W. Glass,et al.  Partially Ordered Groups , 1999 .

[2]  Vaughan R. Pratt,et al.  Modeling concurrency with partial orders , 1986, International Journal of Parallel Programming.

[3]  Daniel Le Métayer,et al.  Programming by multiset transformation , 1993, CACM.

[4]  D. Singh,et al.  AN OVERVIEW OF THE APPLICATIONS OF MULTISETS , 2007 .

[5]  J. Grabowski,et al.  On partial languages , 1981, Fundam. Informaticae.

[6]  D. E. Loeb,et al.  Sets with a negative number of elements , 1992 .

[7]  A. H. Rhemtulla PARTIALLY ORDERED GROUPS (Series in Algebra 7) , 2001 .

[8]  Joost Engelfriet A Multiset Semantics for the pi-Calculus with Replication , 1996, Theor. Comput. Sci..

[9]  Kenneth A. Ross,et al.  Symmetric Relations and Cardinality-Bounded Multisets in Database Systems , 2004, VLDB.

[10]  Michael A. McRobbie,et al.  Multisets and relevant implication I , 1982 .

[11]  Stefano Bistarelli,et al.  Representing Biological Systems with Multiset Rewriting , 2003 .

[12]  Nick Lord,et al.  Abstract algebra with applications , 1993 .

[13]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[14]  Reed Solomon,et al.  Reverse Mathematics and Fully Ordered Groups , 1998, Notre Dame J. Formal Log..

[15]  J. Conway On Numbers and Games , 1976 .

[16]  Gabriel Ciobanu,et al.  A rewriting logic framework for operational semantics of membrane systems , 2007, Theor. Comput. Sci..

[17]  Devendra Singh,et al.  AN OVERVIEW OF THE APPLICATIONS OF MULTISETS 1 , 2007 .

[18]  Andrew M. Pitts,et al.  A First Order Theory of Names and Binding , 2001 .

[19]  Gianfranco Lamperti,et al.  On Multisets in Database Systems , 2000, WMP.

[20]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[21]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[22]  C. Tsinakis,et al.  Ordered algebraic structures , 1985 .

[23]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..

[24]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[25]  Reed Solomon,et al.  – CA0 and order types of countable ordered groups , 2001, Journal of Symbolic Logic.

[26]  C. Weibel,et al.  AN INTRODUCTION TO HOMOLOGICAL ALGEBRA , 1996 .

[27]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 3: Sorting and Searching , 1974 .

[28]  Berndt Farwer,et al.  ω-automata , 2002 .

[29]  C. Morgan,et al.  Automated Theorem Proving in Non-Classical Logics , 1995 .

[30]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[31]  T. Blyth Lattices and Ordered Algebraic Structures , 2005 .

[32]  C. J. Everett,et al.  Ordered Groups , 1945, Dimension Groups and Dynamical Systems.

[33]  Wolfgang Reisig Petri Nets: An Introduction , 1985, EATCS Monographs on Theoretical Computer Science.

[34]  Rohit Parikh,et al.  On Context-Free Languages , 1966, JACM.

[35]  James L. Peterson,et al.  Petri net theory and the modeling of systems , 1981 .

[36]  John S. Rose A Course on Group Theory , 2012 .

[37]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[39]  Reed Solomon,et al.  Ordered Groups: A Case Study in Reverse Mathematics , 1999, Bulletin of Symbolic Logic.

[40]  J. van Leeuwen,et al.  Multiset Processing , 2001, Lecture Notes in Computer Science.

[41]  C. Holland,et al.  The lattice-ordered groups of automorphisms of an ordered set. , 1963 .

[42]  Pascal Fradet,et al.  Generalised multisets for chemical programming , 2006, Math. Struct. Comput. Sci..

[43]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[44]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .