Characterization of a cartilage-derived 66-kDa protein (RGD-CAP/beta ig-h3) that binds to collagen.

A 66-kDa collagen fiber-associated protein (RGD-CAP) was isolated from a fiber-rich fraction of pig cartilage by ultrafiltration and collagen-affinity chromatography. Amino acid sequencing and cDNA cloning indicated that the RGD-CAP is identical or closely related to beta ig-h3 protein which is induced in human adenocarcinoma cells by transforming growth factor-beta (TGF-beta) (Skonier, J., Neubauer, M., Madisen, L., Bennett, K., Plowman, G.D., and Purchio, A.F. (1992) DNA Cell. Biol. 11, 511-522). The RGD-CAP, as well as beta ig-h3, has the RGD sequence in the C-terminal region. The native RGD-CAP bound to type I, II, and IV collagens even in the presence of 1 M NaCl. A recombinant preparation of RGD-CAP expressed in Escherichia coli cells also bound to collagen but not to gelatin. The RGD-CAP mRNA was expressed in chondrocytes throughout all stages, although the expression level was highest during the prehypertrophic stage. In addition, TGF-beta increased the RGD-CAP mRNA level in chondrocyte cultures. Since RGD-CAP transcripts were found in most tissues, this novel collagen-binding protein may play an important role in cell-collagen interactions in various tissues including developing cartilage.

[1]  L. Madisen,et al.  cDNA cloning and sequence analysis of βig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-β , 1992 .

[2]  R. Kikuno,et al.  Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. , 1993, The Biochemical journal.

[3]  D. Rosen,et al.  Transforming growth factor‐beta modulates the expression of osteoblast and chondroblast phenotypes in vitro , 1988, Journal of cellular physiology.

[4]  C. Goodman,et al.  Sequence analysis and neuronal expression of fasciclin I in grasshopper and drosophila , 1988, Cell.

[5]  D. Cheresh,et al.  Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[6]  D. Salter,et al.  Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees. , 1995, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[7]  L. Zijenah,et al.  Analysis of alpha 1 beta 1, alpha 2 beta 1 and alpha 3 beta 1 integrins in cell‐‐collagen interactions: identification of conformation dependent alpha 1 beta 1 binding sites in collagen type I. , 1992, The EMBO journal.

[8]  J. Crabb,et al.  cDNA from human ocular ciliary epithelium homologous to βig‐h3 is preferentially expressed as an extracellular protein in the corneal epithelium , 1994, Journal of cellular physiology.

[9]  D. Heinegård,et al.  Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. , 1984, The Biochemical journal.

[10]  C. Goodman,et al.  Drosophila fasciclin I is a novel homophilic adhesion molecule that along with fasciclin III can mediate cell sorting , 1990, The Journal of cell biology.

[11]  D. Heinegård,et al.  Purification and structural characterization of a cartilage matrix protein. , 1981, The Biochemical journal.

[12]  P. Thomas,et al.  Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[13]  F. Sanger,et al.  Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. , 1980, Journal of molecular biology.

[14]  J. Sasse,et al.  RNA isolation from cartilage using density gradient centrifugation in cesium trifluoroacetate: an RNA preparation technique effective in the presence of high proteoglycan content. , 1992, Analytical biochemistry.

[15]  M. Noshiro,et al.  Enhancement of SPARC (osteonectin) synthesis in arthritic cartilage. Increased levels in synovial fluids from patients with rheumatoid arthritis and regulation by growth factors and cytokines in chondrocyte cultures. , 1996, Arthritis and rheumatism.

[16]  E. Vuorio,et al.  Reduced amounts of cartilage collagen fibrils and growth plate anomalies in transgenic mice harboring a glycine-to-cysteine mutation in the mouse type II procollagen alpha 1-chain gene. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Iwamoto,et al.  Characterization of the mineralization process in cultures of rabbit growth plate chondrocytes. , 1993, Developmental biology.

[18]  L. Ala‐Kokko,et al.  Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. LeBaron,et al.  Beta IG-H3, a novel secretory protein inducible by transforming growth factor-beta, is present in normal skin and promotes the adhesion and spreading of dermal fibroblasts in vitro. , 1995, The Journal of investigative dermatology.

[20]  Hans Marquardt,et al.  βig-h3: A Transforming Growth Factor-β-Responsive Gene Encoding a Secreted Protein That Inhibits Cell Attachment In Vitro and Suppresses the Growth of CHO Cells in Nude Mice , 1994 .

[21]  C. Richardson,et al.  Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Hogan,et al.  Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization , 1988, The Journal of cell biology.

[23]  F. Seela,et al.  Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. , 1986, Nucleic acids research.

[24]  A. Reddi,et al.  Appearance of fibronectin during the differentiation of cartilage, bone, and bone marrow , 1981, The Journal of cell biology.

[25]  M. Iwamoto,et al.  Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor beta and serum factors. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. Olsen,et al.  A type X collagen mutation causes Schmid metaphyseal chondrodysplasia , 1993, Nature Genetics.