Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos
暂无分享,去创建一个
[1] Gaëtan Kerschen,et al. Probabilistic Assessment of the Lifetime of Low-Earth-Orbit Spacecraft: Uncertainty Characterization , 2015 .
[2] Gaëtan Kerschen,et al. Probabilistic Assessment of Lifetime of Low-Earth-Orbit Spacecraft: Uncertainty Propagation and Sensitivity Analysis , 2015 .
[3] Brandon A. Jones,et al. Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions , 2015 .
[4] Alireza Doostan,et al. Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.
[5] P. Nair,et al. Aircraft Robust Trajectory Optimization Using Nonintrusive Polynomial Chaos , 2014 .
[6] F. Landis Markley,et al. Wald Sequential Probability Ratio Test for Space Object Conjunction Assessment , 2014 .
[7] Alireza Doostan,et al. Satellite collision probability estimation using polynomial chaos expansions , 2013 .
[8] F. Markley,et al. Wald Sequential Probability Ratio Test for Analysis of Orbital Conjunction Data , 2013 .
[9] Daniel J. Scheeres,et al. Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem , 2012 .
[10] Aubrey B. Poore,et al. Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .
[11] Adrian Sandu,et al. A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems , 2010 .
[12] Paul J. Cefola,et al. Entropy-Based Space Object Data Association Using an Adaptive Gaussian Sum Filter , 2010 .
[13] R. Bhattacharya,et al. Nonlinear estimation with polynomial chaos and higher order moment updates , 2010, Proceedings of the 2010 American Control Conference.
[14] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[15] H. Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[16] Aubrey B. Poore,et al. Covariance consistency for track initiation using Gauss-Hermite quadrature , 2010, Defense + Commercial Sensing.
[17] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[18] Brandon A. Jones,et al. Comparisons of the Cubed-Sphere Gravity Model with the Spherical Harmonics , 2010 .
[19] Puneet Singla,et al. An Approach for Nonlinear Uncertainty Propagation: Application to Orbital Mechanics , 2009 .
[20] Gianluca Iaccarino,et al. A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..
[21] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[22] A. Nouy. Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .
[23] James D. Turner,et al. A high order method for estimation of dynamic systems , 2008 .
[24] A. Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .
[25] Roger Ghanem,et al. Stochastic model reduction for chaos representations , 2007 .
[26] R. Park,et al. Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design , 2006 .
[27] O. L. Maître,et al. Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .
[28] Adrian Sandu,et al. Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects , 2006 .
[29] Adrian Sandu,et al. Modeling multibody systems with uncertainties. Part II: Numerical applications , 2006 .
[30] F. Pukelsheim. Optimal Design of Experiments (Classics in Applied Mathematics) (Classics in Applied Mathematics, 50) , 2006 .
[31] N. Johnson,et al. Risks in Space from Orbiting Debris , 2006, Science.
[32] V. Melas. Functional Approach to Optimal Experimental Design , 2005 .
[33] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[34] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[35] M. Cheng,et al. GGM02 – An improved Earth gravity field model from GRACE , 2005 .
[36] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[37] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[38] B. Tapley,et al. Statistical Orbit Determination , 2004 .
[39] Richard H. Lyon,et al. Geosynchronous orbit determination using space surveillance network observations and improved radiative force modeling , 2004 .
[40] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[41] Gregory Beylkin,et al. Toward Multiresolution Estimation and Efficient Representation of Gravitational Fields , 2002 .
[42] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[43] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[44] R. Ghanem,et al. A stochastic projection method for fluid flow. I: basic formulation , 2001 .
[45] Rudolph van der Merwe,et al. The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).
[46] John Red-Horse,et al. Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .
[47] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[48] Roger Ghanem,et al. Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .
[49] D. Vallado. Fundamentals of Astrodynamics and Applications , 1997 .
[50] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[51] John L. Junkins,et al. Non-Gaussian error propagation in orbital mechanics , 1996 .
[52] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[53] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[54] P. Túrán. On orthogonal polynomials , 1975 .
[55] Stephen M. Stigler,et al. Optimal Experimental Design for Polynomial Regression , 1971 .
[56] P. Schrimpf,et al. Dynamic Programming , 2011 .
[57] Chris Sabol,et al. Linearized Orbit Covariance Generation and Propagation Analysis via Simple Monte Carlo Simulations (Preprint) , 2010 .
[58] Omar M. Knio,et al. Introduction: Uncertainty Quantification and Propagation , 2010 .
[59] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[60] Sparse Grids , 2008 .
[61] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[62] Vladimir A. Chobotov,et al. Orbital Mechanics, Third Edition , 2002 .
[63] Michael Jackson,et al. Optimal Design of Experiments , 1994 .